基于相关滤波的目标快速跟踪算法研究Research on target fast tracking algorithm based on correlation filtering
林海涛,钟海俊,王斌,窦高奇
摘要(Abstract):
在实现高精确度和快速的目标跟踪过程中,相关滤波是一个非常好的选择,但是目前所有的相关滤波跟踪方法仍然无法解决遮挡和光照变化等因素造成的干扰。因此,在传统核相关滤波器(KCF)的基础上,提出多特征图核相关滤波器(MKCF)的目标快速跟踪方法。首先,由初始化目标区域生成多个特征图,并通过对正则化最小二乘(RLS)分类器学习获得位置和尺度核相关滤波器(KCF);然后,随机选取一个特征图,寻找位置和尺度KCF输出响应的最大值,完成目标位置和尺度的检测;最后,随机选择需要在线更新的目标模型。经过试验测试,对比KCF,MKCF的平均中心位置误差(CLE)减少了5像素,平均成功率(SR)提高了10.9%,平均距离精度提高了6.7%;MKCF在目标发生尺度变化、光照变化、形态变化、目标遮挡、轻度旋转及快速运动等复杂情况下均有较强的适应性,具有重要的理论和应用研究价值。
关键词(KeyWords): 视觉目标跟踪;相关滤波器;多特征图;平均成功率;分类器;中心位置误差
基金项目(Foundation): 国家自然科学基金青年项目:基于叠加训练序列的时变信道估计及预编码信号分离策略研究(61302099)~~
作者(Author): 林海涛,钟海俊,王斌,窦高奇
DOI: 10.16652/j.issn.1004-373x.2018.02.006
参考文献(References):
- [1]SMEULDERS A,CHU D,CUCCHIARA R,et al.Visual tracking:an experimental survey[J].IEEE transactions on pattern analysis and machine intelligence,2014,36(7):1442-1468.
- [2]YANG H,SHAO L,ZHENG F,et al.Recent advances and trends in visual tracking:a review[J].Neurocomputing,2011,74(18):3823-3831.
- [3]SEVILLALARA L,LEARNEDMILLER E.Distribution fields for tracking[J/OL].[2014-09-01].http://www.docin.com/p-907054381.html.
- [4]LAMPERT C H,BLASCHKO M B,HOFMANN T.Beyond sliding windows:object localization by efficient subwindow search[J/OL].[2012-03-13].https://wenku.baidu.com/view/bdaf781d964bcf84b9d57bed.html.
- [5]GRABNER H,LEISTNER C,BISCHOF H.Semi-supervised on-line boosting for robust tracking[J/OL].[2013-09-25].https://wenku.baidu.com/view/ba42eb155a8102d276a22f4f.html.
- [6]LING H.Online robust image alignment via iterative convex optimization[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2012(10):1808-1814.
- [7]HARZALLAH H,JURIE F,SCHMID C.Combining efficient object localization and image classification[J/OL].[2011-01-07].http://www.docin.com/p-115492842.html.
- [8]ZHANG K,ZHANG L,YANG M H.Real-time compressive tracking[J/OL].[2012-10-21].https://wenku.baidu.com/view/765a767601f69e3143329460.html.
- [9]KALAL Z,MIKOLAJCZYK K,MATAS J.Tracking learning detection[J].Transactions on pattern analysis and machine intelligence,2012,34(7):1409-1422.
- [10]BABENKO B,YANG M H,BELONGIE S.Robust object tracking with online multiple instance learning[J].IEEE transactions on pattern analysis and machine intelligence,2011,33(8):1619-1632.
- [11]BERTINETTO L,VALMADRE J,GOLODETZ S,et al.Staple:complementary learners for real-time tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2016,6:1401-1409.
- [12]MA C,YANG X,ZHANG C,et al.Long-term correlation tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2015(6):5388-5396.
- [13]ZHU G,WANG J,WU Y,et al.Collaborative correlation tracking[J/OL].[2015-12-17].http://www.doc88.com/p-9059717371800.html.
- [14]BOLME D S,BEVERIDGE J R,DRAPER B A,et al.Visual object tracking using adaptive correlation filters[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.San Francisco,CA,USA:IEEE,2010,5:2544-2550.
- [15]BOLME D S,DRAPER B A,BEVERIDGE J R.Average of synthetic exact filters[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2009(6):2105-2112.
- [16]WU Y,LIM J,YANG M H.Online object tracking:a benchmark[J/OL].[2015-05-09].https://wenku.baidu.com/view/510c17fd27284b73f24250a0.html.
- [17]AVIDAN S.Support vector tracking[J].IEEE transactions on pattern analysis and machine intelligence,2004,26(8):1064-1072.
- [18]FELZENSZWALB P F,GIRSHICK R B,MCALLESTER D,et al.Object detection with discriminatively trained partbased models[J/OL].[2011-02-06].https://wenku.baidu.com/view/a537fb7e5acfa1c7aa00cc7e.html.
- [19]GONZáLEZ R C,WOODS R E.Digital image processing[J].Prentice hall international,2008,28(4):484-486.
- [20]ALEXE B,PETRESCU V,FERRARI V.Exploiting spatial overlap to efficiently compute appearance distances between image windows[J].Neural information processing systems,2011(12):2735-2743.
- [21]VEDALDI A,GULSHAN V,VARMA M,et al.Multiple kernels for object detection[C]//Proceedings of IEEE International Conference on Computer Vision.[S.l.]:IEEE,2009,1:606-613.
- [22]DANELLJAN M,HAGER G,KHAN F S,et al.Convolutional features for correlation filter based visual tracking[C]//Proceedings of IEEE International Conference on Computer Vision Workshop.[S.l.]:IEEE,2015,12:621-629.
- [23]DANELLJAN M,HAGER G,KHAN F S,et al.Learning spatially regularized correlation filters for visual tracking[C]//Proceedings of IEEE International Conference on Computer Vision.[S.l.]:IEEE,2015,12:4310-4318.
- [24]HENRIQUES J F,RUI C,MARTINS P,et al.High-speed tracking with kernelized correlation filters[J].IEEE transactions on pattern analysis and machine intelligence,2014,37(3):583-596.
- [25]KRISTAN M,MATAS J,LEONARDIS A,et al.The visual object tracking VOT2015 challenge results[C]//Proceedings of IEEE International Conference on Computer Vision Workshop.[S.l.]:IEEE,2016,6:564-586.
- [26]GALOOGAHI H K,SIM T,LUCEY S.Multi-channel correlation filters[C]//Proceedings of IEEE International Conference on Computer Vision.[S.l.]:IEEE,2014,3:3072-3079.
- [27]Boddeti V N,Kanade T,Kumar B V.Correlation filters for object alignment[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2013,9:2291-2298.
- [28]VEDALDI A,ZISSERMAN A.Efficient additive kernels via explicit feature maps[J].IEEE transactions on pattern analysis and machine intelligence,2012,34(3):480-492.
- [29]DOLLáR P,APPEL R,BELONGIE S,et al.Fast feature pyramids for object detection[J].IEEE transactions on pattern analysis and machine intelligence,2014,36(8):1532-1545.
- [30]NING J,YANG J,JIANG S,et al.Object tracking via dual linear structured SVM and explicit feature map[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2016,12:4266-4274.
- [31]LI A,LIN M,WU Y,et al.NUS-PRO:a new visual tracking challenge[J].IEEE transactions on pattern analysis and machine intelligence,2016,38(2):335-349.
- [32]HENRIQUES J F,RUI C,MARTINS P,et al.Exploiting the circulant structure of tracking-by-detection with kernels[C]//Proceedings of European Conference on Computer Vision.[S.l.:s.n.],2012:702-715.
- [33]REVAUD J,DOUZE M,SCHMID C,et al.Event retrieval in large video collections with circulant temporal encoding[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2013,9:2459-2466.
- [34]HENRIQUES J F,CARREIRA J,CASEIRO R,et al.Beyond hard negative mining:efficient detector learning via block-circulant decomposition[C]//Proceedings of IEEE International Conference on Computer Vision.[S.l.]:IEEE,2013,12:2760-2767.