量子遗传算法在变压器故障诊断模型中的应用Application of quantum genetic algorithm in transformer fault diagnosis model
龚瑞昆,周国庆
摘要(Abstract):
传统的BP神经网络诊断模型容易陷入局部最优,且诊断正确率较低,因此,提出将量子遗传算法应用于RBF网络诊断模型。首先确定RBF神经网络的输入输出、建立RBF网络模型,然后把归一化后的数据送入RBF网络模型,利用量子遗传算法对RBF神经网络进行优化,得到最优诊断模型,最后输出诊断结果。用Matlab进行仿真,其结果表明该算法解决了系统容易陷入局部最优的问题,在训练48代后就快速获得最优解,加快了网络的收敛速度。同时RBF神经网络的泛化能力也得到很好的改善,故障诊断正确率达93%,远远高于传统神经网络模型。
关键词(KeyWords): 变压器;故障诊断;BP神经网络;量子计算;RBF神经网络;量子遗传算法
基金项目(Foundation): 国家自然科学基金项目(61271402)~~
作者(Author): 龚瑞昆,周国庆
DOI: 10.16652/j.issn.1004-373x.2018.15.029
参考文献(References):
- [1]刘宾.电力变压器的故障诊断与风险评估[D].济南:山东大学,2013.LIU Bin.Fault diagnosis and risk assessment of power transformers[D].Jinan:Shandong University,2013.
- [2]李梦醒.如何应用油中溶解气体分析法判断变压器故障方法[J].现代国企研究,2016(24):162.LI Mengxing.How to use the dissolved gas analysis method in oil to determine transformer faults[J].Modern state-owned enterprise research,2016(24):162.
- [3]禹建丽,卞帅.基于BP神经网络的变压器故障诊断模型[J].系统仿真学报,2014,26(6):1343-1349.YU Jianli,BIAN Shuai.Transformer fault diagnosis model based on BP neural network[J].Journal of system simulation,2014,26(6):1343-1349.
- [4]吴宏岐,周妮娜,王春英.基于RBF神经网络的变压器故障诊断及MATLAB仿真研究[J].科学技术与工程,2010,10(5):1249-1251.WU Hongqi,ZHOU Nina,WANG Chunying.Fault diagnosis and Matlab simulation of transformer based on RBF neural network[J].Science,technology and engineering,2010,10(5):1249-1251.
- [5]梁昌勇,柏桦,蔡美菊,等.量子遗传算法研究进展[J].计算机应用研究,2012,29(7):2401-2405.LIANG Changyong,BAI Hua,CAI Meiju,et al.Progress in quantum genetic algorithms[J].Application research of computers,2012,29(7):2401-2405.
- [6]李胜,张培林,李兵,等.基于通用量子门的量子遗传算法及应用[J].计算机工程与应用,2017,53(7):54-59.LI Sheng,ZHANG Peilin,LI Bing,et al.Quantum genetic algorithm based on universal quantum gate and its application[J].Computer engineering and applications,2017,53(7):54-59.
- [7]李红卫.变压器油化验技术分析及影响[J].中国高新技术企业,2016(1):55-57.LI Hongwei.Analysis and influence of transformer oil testing technology[J].China high-tech enterprise,2016(1):55-57.
- [8]朱紫娟.综合故障诊断方法在电力变压器故障诊断中的应用研究[D].西安:西安工程大学,2016.ZHU Zijuan.Application of comprehensive fault diagnosis method in fault diagnosis of power transformer[D].Xi’an:Xi’an Polytechnic University,2016.
- [9]赵越,茹婷婷.遗传算法理论与应用新探[J].轻工科技,2014,30(1):77-78.ZHAO Yue,RU Tingting.A new probe into the theory and application of genetic algorithm[J].Light industry technology,2014,30(1):77-78.
- [10]马颖.基于量子计算理论的优化算法研究[D].西安:西北工业大学,2014.MA Ying.Research on optimization algorithm based on quantum computing theory[D].Xi’an:Northwestern Polytechnical University,2014.
- [11]周殊,潘炜,罗斌,等.一种基于粒子群优化方法的改进量子遗传算法及应用[J].电子学报,2006(5):897-901.ZHOU Shu,PAN Wei,LUO Bin,et al.An improved quantum genetic algorithm based on particle swarm optimization and its application[J].Acta electronica sinica,2006(5):897-901.
- [12]王俊宁,姚莉.电力变压器常见故障及在线监测技术分析[J].科技创新与应用,2014(13):141.WANG Junning,YAO Li.Analysis of common faults and online monitoring techniques of power transformers[J].Technological innovation and application,2014(13):141.
- [13]张岩.电力变压器常见故障及在线监测技术分析[J].黑龙江科技信息,2014(30):73.ZHANG Yan.Analysis of common faults and online monitoring techniques of power transformers[J].Heilongjiang science and technology information,2014(30):73.