图像修复技术在环境艺术设计中的应用研究Application of image restoration technology in environmental art design
黄洋
摘要(Abstract):
在环境艺术设计中,需要对环境信息缺失部分进行有效修复,提高环境艺术的信息表达能力。提出一种基于块与块阵稀疏度匹配的图像修复技术,并应用在环境艺术设计中。在仿射不变子空间中对采集的环境艺术图像进行块匹配,采用模板匹配技术进行图像破损区域的边缘像素点提取,以边缘像素点为信息定位中心,提取环境艺术图像破损区域的边缘轮廓,根据边缘轮廓的像素点分布阵列的稀疏度差异性进行块匹配,在最佳修复块区域内进行环境艺术图像的纹理信息复原,提高环境艺术的鉴别和分辨能力。仿真结果表明,采用该方法进行图像修复能有效修复环境艺术图像的缺失部分,避免边缘模糊化,输出图像的信息饱含度较高,说明环境艺术的表达能力较强,在环境艺术设计中具有很好的应用价值。
关键词(KeyWords): 图像修复;环境艺术设计;稀疏度;块匹配;像素;边缘轮廓
基金项目(Foundation): 2016年四川省教育厅人文社科重点课题:藏羌造型艺术数字化资源库建设研究(16SA0147)~~
作者(Author): 黄洋
DOI: 10.16652/j.issn.1004-373x.2018.11.012
参考文献(References):
- [1]郭丙华,岑志松.小波去噪和神经网络相融合的超分辨率图像重建[J].激光杂志,2016,37(2):61-64.GUO Binghua,CEN Zhisong.Super resolution image reconstruction based on wavelet denoising and neural network[J].Laser journal,2016,37(2):61-64.
- [2]毛珩,TAO Louis,陈良怡.自适应光学技术在深层动态荧光显微成像中的应用和发展[J].红外与激光工程,2016,45(6):9-15.MAO Heng,TAO Louis,CHEN Liangyi.Application and development of adaptive optics to three-dimensional in vivo deep tissue fluorescent microscopy[J].Infrared and laser engineering,2016,45(6):9-15.
- [3]潘宗序,禹晶,胡少兴,等.基于多尺度结构自相似性的单幅图像超分辨率算法[J].自动化学报,2014,40(4):594-603.PAN Zongxu,YU Jing,HU Shaoxing,et al.Single image super resolution based on multi-scale structural self-similarity[J].Acta automatica sinica,2014,40(4):594-603.
- [4]MEHER S K.Recursive and noise-exclusive fuzzy switching median filter for impulse noise reduction[J].Engineering applications of artificial intelligence,2014,30(3):145-154.
- [5]HSIEH M H,CHENG F C,SHIE M C,et al.Fast and efficient median filter for removing 1-99%levels of salt-and-pepper noise in images[J].Engineering applications of artificial intelligence,2013,26(4):1333-1338.
- [6]谭海鹏,曾炫杰,牛四杰,等.基于正则化约束的遥感图像多尺度去模糊[J].中国图象图形学报,2015,20(3):386-394.TAN Haipeng,ZENG Xuanjie,NIU Sijie,et al.Remote sensing image multi-scale deblurring based on regularization constraint[J].Journal of image and graphics,2015,20(3):386-394.
- [7]ZHANG Z,GANESH A,LIANG X,et al.TILT:transform invariant low-rank textures[J].International journal of computer vision,2012,99(1):1-24.
- [8]黄光亚,曾水玲,张书真,等.基于三维轴距的图像去噪算法[J].电子与信息学报,2015,37(3):552-559.HUANG Guangya,ZENG Shuiling,ZHANG Shuzhen,et al.Image denosie algorithm based on three-dimensional axis distance[J].Journal of electronics&information technology,2015,37(3):552-559.
- [9]CHEN Y C,LIN Z H,ZHAO X,et al.Deep learning-based classification of hyperspectral data[J].IEEE journal of selected topics in applied earth observations and remote sensing,2017,7(6):2094-2107.
- [10]WAN L J,TANG K,LI M Z,et al.Collaborative active and semisupervised learning for hyperspectral remote sensing image classification[J].IEEE transactions on geoscience and remote sensing,2015,53(5):2384-2396.
- [11]李卓,刘洁瑜,李辉,等.基于ORB-LATCH的特征检测与描述算法[J].计算机应用,2017,37(6):1759-1762.LI Zhuo,LIU Jieyu,LI Hui,et al.Feature detection and description algorithm based on ORB-LATCH[J].Journal of computer applications,2017,37(6):1759-1762.