大型教学系统中的智能大数据关键特征估计方法A key feature estimation method for intelligent big data in large-scale teaching system
王军涛
摘要(Abstract):
传统二阶特征估计法在对大数据方差进行估计,预测大型教学系统中的智能大数据关键特征时,存在对多特征的智能大数据关键特征估计效果不明显,估计结果误差累计量大的问题。因此,提出大型教学系统的智能大数据关键特征估计方法,其采用Relief关键特征估计方法获取大数据特征权重,完成智能大数据特征流行学习,通过对特征权重选择后的数据空间进行无监督学习和低维嵌入,实现对多特征的智慧大数据的特征估计。基于大数据关键特征估计结果,采用滚动时间序列估计方法,通过AR(p)模型运算大数据特征的模型阶数,依据该阶数向滚动AR算法引入实时数据,解决大数据特征估计中估计结果不同步造成的累计误差问题,实现智能大数据关键特征准确预测。实验结果表明,所提方法可增强对关键特征的估计精度,对关键特征的估计效果也有所提高。
关键词(KeyWords): 大型教学系统;智能大数据;关键特征;Relief;时间序列估计;累计误差
基金项目(Foundation): 国家高分重大专项项目(67-Y20A07-9002-16/17);; 河北省社会科学基金项目(HB16JY005)~~
作者(Author): 王军涛
DOI: 10.16652/j.issn.1004-373x.2018.12.021
参考文献(References):
- [1]SU H,YANG H,ZHENG S.The large-scale crowd density estimation based on effective region feature extraction method[J].Lecture notes in computer science,2010,6494:302-313.
- [2]张凯锋,杨国强,陈汉一,等.基于数据特征提取的风电功率预测误差估计方法[J].电力系统自动化,2014,38(16):22-27.ZHANG Kaifeng,YANG Guoqiang,CHEN Hanyi,et al.An estimation method for wind power forecast errors based on numerical feature extraction[J].Automation of electric power systems,2014,38(16):22-27.
- [3]李炳乾.对等P2P网络中大数据关键特征挖掘模型仿真[J].计算机仿真,2014,31(11):294-296.LI Bingqian.Model simulation of big data key characteristics mining for peer-to-peer networks[J].Computer simulation,2014,31(11):294-296.
- [4]张招亮,陈海明,黄庭培,等.无线网络的差异化比特错误率估计方法[J].计算机研究与发展,2014,51(1):138-150.ZHANG Zhaoliang,CHEN Haiming,HUANG Tingpei,et al.Differentiated bit error rate estimation for wireless networks[J].Journal of computer research and development,2014,51(1):138-150.
- [5]樊源泉,伍卫国,许云龙,等.Map Reduce环境中的性能特征能耗估计方法[J].西安交通大学学报,2015,49(2):14-19.FAN Yuanquan,WU Weiguo,XU Yunlong,et al.A power estimation method based on performance features in Map Reduce environments[J].Journal of Xi’an Jiaotong University,2015,49(2):14-19.
- [6]梁胜杰,张志华,高绍忠,等.基于变点分析思想的高维机械噪声数据本征维估计方法[J].船舶力学,2016,20(11):1485-1493.LIANG Shengjie,ZHANG Zhihua,GAO Shaozhong,et al.A method of latent characteristic variables dimensionality evaluating of high-dimensional mechanical noise data based changepoint analysis[J].Journal of ship mechanics,2016,20(11):1485-1493.
- [7]唐建生,靳云姬,江向东.目标机动时刻估计的声特征变化显著性检验方法[J].系统工程与电子技术,2016,38(2):270-273.TANG Jiansheng,JIN Yunji,JIANG Xiangdong.Target maneuver onset time estimation via significance test of acoustic feature variation[J].Systems engineering and electronics,2016,38(2):270-273.
- [8]BI T,NI Y,SHEN C M,et al.An on-line distributed intelligent fault section estimation system for large-scale power networks[J].Electric power systems research,2002,62(3):173-182.
- [9]徐子伟,王鹏,陈宗海.一种基于Fisher比率和预测风险准则的电信客户流失预测分步特征选择方法[J].中国科学技术大学学报,2017,47(8):686-694.XU Ziwei,WANG Peng,CHEN Zonghai.A two-stage feature selection method based on Fisher′s ratio and prediction risk for telecom customer churn prediction[J].Journal of University of Science and Technology of China,2017,47(8):686-694.
- [10]SHOJI S,KOYAMA A.A fast classification method of isomorphic polygons in design data of large scale integrated circuit[C]//Proceedings of 10th International Conference on Complex,Intelligent,and Software Intensive Systems.Fukuoka:IEEE,2016:204-209.