无人战车追逃定性微分对策中界栅的确定Determination of barrier in pursuit-evasion qualitative differential game of unmanned combat vehicle
于飞,李擎,原鑫
摘要(Abstract):
研究无人战车在无障碍、有障碍两种对局环境中的追逃问题,主要讨论了追逃定性微分对策中界栅的确定。在无障碍条件下,建立对局双方的运动模型,由于两者到达捕获点的时间是相同的,因此可以通过消除时间参数构建界栅。该方法与Isaac提出的构造界栅的经典方法结果一致,并在此基础上分析了躲避区的最大面积。在无人车的实际行驶过程中肯定会受到障碍物的影响,探讨了在有障碍条件下的追逃微分对策界栅的构建。考虑线性障碍物的影响,分析在障碍物存在的条件下双方的等时线分布情况,并提出用等时线的交集确定界栅的方法。
关键词(KeyWords): 无人战车;追逃定性微分对策;运动模型;障碍;等时线;界栅
基金项目(Foundation): 国家自然科学基金(61471046);; 北京市自然科学基金(4172022)~~
作者(Author): 于飞,李擎,原鑫
DOI: 10.16652/j.issn.1004-373x.2018.15.036
参考文献(References):
- [1]谭拂晓,刘德荣,关新平,等.基于微分对策理论的非线性控制回顾与展望[J].自动化学报,2014,40(1):1-15.TAN Fuxiao,LIU Derong,GUAN Xinping,et al.Review and perspective of nonlinear systems control based on differential games[J].Acta automatica sinica,2014,40(1):1-15.
- [2]佟明安,王立新.三维空间双机格斗的捕捉区和危险区[J].航空学报,1989,10(11):536-544.TONG Ming’an,WANG Lixin.The capture and dangerous range for a three-dimensional two-aircraft air-to-air combat problem[J].Acta aeronautica et astronau,1989,10(11):536-544.
- [3]张秋华,孙毅,黄明明,等.近地共面轨道上两飞行器在径向连续小推力下的追逃界栅[J].控制与决策,2007,22(5):530-534.ZHANG Qiuhua,SUN Yi,HUANG Mingming,et al.Pursuitevasion barrier of two space crafts under minute continuous radial thrust in coplanar orbit[J].Control and decision,2007,22(5):530-534.
- [4]黄银春.导弹拦截飞机末端制导制导律和界栅的研究[D].哈尔滨:哈尔滨工业大学,2014.HUANG Yinchun.The research about the barrier and guidance law of misslie intercepting aircraft terminal guidance[D].Harbin:Harbin Institute of Technology,2014.
- [5]原鑫,李擎,苏中.基于微分对策理论的两车碰撞问题[J].北京信息科技大学学报(自然科学版),2016,31(5):68-72.YUAN Xin,LI Qing,SU Zhong.Collision problem of two cars based on differential game theory[J].Journal of Beijing Information Science&Technology University(natural science),2016,31(5):68-72.
- [6]车竞,钱炜祺,和争春.基于矩阵博弈的两机攻防对抗空战仿真[J].飞行力学,2015,33(2):173-177.CHE Jing,QIAN Weiqi,HE Zhengchun.Attack-defense confrontation simulation of air combat based on game-matrix approach[J].Flight dynamics,2015,33(2):173-177.
- [7]MITCHELL J S B.A new algorithm for shortest paths among obstacles in the plane[J].Annals of mathematics and artificial intelligence,1991,3(1):83-105.
- [8]CHEN Jie,ZHA Wenzhong,PENG Zhihong.Multi-player pursuit-evasion games with one superior evader[J].Automatica,2016,71:24-32.
- [9]龚华军,杨长锋,王彪,等.无人机的追逃对抗仿真研究[J].控制理论与应用,2009,26(9):1019-1022.GONG Huajun,YANG Changfeng,WANG Biao,et al.Simulation of pursuit-evasion among multi-UAV[J].Control theory&applications,2009,26(9):1019-1022.
- [10]黄力伟.求解微分对策问题的混合法[J].火力与指挥控制,2011,36(1):50-52.HUANG Liwei.Mixed method for solving the problem of differential games[J].Fire control&command control,2011,36(1):50-52.
- [11]RUIZ U.A visual feedback-based time-optimal motion policy for capturing an unpredictable evader[J].International journal of control,2015,88(4):663-681.
- [12]王发坤,秦艳琳.三维空间中追逃对抗定性微分对策模型研究[J].舰船电子工程,2008,28(7):8-10.WANG Fakun,QIN Yanlin.Research on pursuit and evasion resist model in the space based on qualitative differential games[J].Ship electronic engineering,2008,28(7):8-10.
- [13]蔡文新,方洋旺,吴彦锐,等.基于马尔科夫跳变系统的微分对策制导律[J].弹道学报,2013,25(3):24-27.CAI Wenxin,FANG Yangwang,WU Yanrui,et al.Differential game guidence-law based on Markov jump system[J].Journal of ballistics,2013,25(3):24-27.
- [14]车竞,郑凤麒.基于微分对策的追逃对抗仿真[J].飞行力学,2014,32(4):372-375.CHE Jing,ZHENG Fengqi.Simulation of pursuit-evasion resistance based on differential game[J].Flight dynamics,2014,32(4):372-375.
- [15]李登峰.微分对策及应用[M].北京:国防工业出版社,2000.LI Dengfeng.Differential strategy and its application[M].Beijing:National Defense Industry Press,2000.