基于改进FP算法的隧道交通事故关联分析Improved FP algorithm based associations analysis of tunnel traffic accident
刘云翔,韩贝
摘要(Abstract):
为了有效地对隧道交通事故进行预测,发现引起隧道交通事故的因素之间的潜在关系,针对隧道交通事故数据的特点,提出改进的FP-Growth算法,对事务与属性赋予权重,从而能够有效地挖掘出隐藏的、更有意义的关联规则。并利用改进后的WFP-Growth算法建立关联规则挖掘模型,通过挖掘采集的数据,找出导致隧道交通事故的频繁因素组合,分析结果找出决策规则。
关键词(KeyWords): 数据挖掘;关联规则;WFP-Growth算法;权重;公路隧道;交通事故
基金项目(Foundation): 国家自然科学基金资助项目(41671402);国家自然科学基金资助项目(61401281)~~
作者(Author): 刘云翔,韩贝
DOI: 10.16652/j.issn.1004-373x.2018.17.031
参考文献(References):
- [1]交通运输部.2015年交通运输行业发展统计公报[N].中国交通报,2016-05-05(002).Ministry of Transport of the People′s Republic of China.2015statistics bulletin of transportation industry[N].China transport news,2016-05-05(002).
- [2]云建平.高速公路隧道群交通事故分布特点及预防对策[J].科技与创新,2016(18):60.YUN Jianping.Distribution characteristics and preventive measures of traffic accidents in freeway tunnel group[J].Technology and innovation,2016(18):60.
- [3]李仕琼.数据挖掘中关联规则挖掘算法的分析研究[J].电子技术与软件工程,2015(4):200.LI Shiqiong.Analysis and research of association rules mining algorithm in data mining[J].Electronic technology and software engineering,2015(4):200.
- [4]ALAVI F,HASHEMI S.DFP-SEPSF:a dynamic frequent pattern tree to mine strong emerging patterns in streamwise features[J].Engineering applications of artificial intelligence,2015,37:54-70.
- [5]石芹芹.基于FP树的极大频繁项集的挖掘方法[J].现代计算机(专业版),2015(36):7-10.SHI Qinqin.Mining method of maximal frequent itemsets based on FP tree[J].Modern computer(professional edition),2015(36):7-10.
- [6]王艳辉,王淑君,李曼,等.基于改进FP-Growth算法的CRHX型动车组牵引系统关联失效模型研究[J].铁道学报,2016,38(9):72-80.WANG Yanhui,WANG Shujun,LI Man,et al.Research on correlative failure model of CRHX EMU traction system based on improved FP-Growth algorithm[J].Railway journal,2016,38(9):72-80.
- [7]郑志成,姜昌金.基于FP-Growth的改进算法[J].工业控制计算机,2015,28(5):105-106.ZHENG Zhicheng,JIANG Changjin.Improved algorithm based on FP-Growth[J].Industrial control computers,2015,28(5):105-106.
- [8]赵远东,方正华.带有权重函数学习因子的粒子群算法[J].计算机应用,2013,33(8):2265-2268.ZHAO Yuandong,FANG Zhenghua.Particle swarm optimization algorithm with weight function learning factor[J].Journal of computer applications,2013,33(8):2265-2268.
- [9]JIAN S Y,WONG Y D.Road traffic accidents in Singapore expressway tunnels[J].Tunnelling&underground space technology,2013,38:534-541.
- [10]AMUNDSEN F H,RANES G.Studies on traffic accidents in Norwegian road tunnels[J].Tunnelling&underground space technology,2000,15(1):3-11.
- [11]LU L J,LU J,XING Y,et al.Statistical analysis of traffic accidents in Shanghai river crossing tunnels and safety countermeasures[J].Discrete dynamics in nature&society,2014(2):1-7.