直连BP神经网络分类效果综合评估Comprehensive evaluation for classification effect of BPNN-DIOC
牛丽丽,王耀力,王力波
摘要(Abstract):
基于贝叶斯正则化LM算法优化直连BP神经网络,利用UCI数据库的118种不同应用数据分别进行分类,验证直连BP神经网络的有效性。分别进行输入层到输出层是否有直连,输出层是否有阈值的四种比较,将所得的118种数据集分类精确度结果用统计方法进行分析。基于统计意义,实验结果表明,加入直连提高了分类的精确度和网络结构的泛化性能,且隐含层的神经元个数减少,提高了训练速度;而输出层是否有阈值对分类效果没有明显的影响。
关键词(KeyWords): 直连神经网络;贝叶斯正则化;数据库;分类;统计方法;测试精确度
基金项目(Foundation): 全国工程专业学位研究生教育指导委员会立项项目(2016-ZX-095)~~
作者(Author): 牛丽丽,王耀力,王力波
DOI: 10.16652/j.issn.1004-373x.2018.23.020
参考文献(References):
- [1]陈明.Matlab神经网络原理与实例精解[M].北京:清华大学出版社,2013:246-249.CHEN M.Principles and examples of Matlab neural network solution[M].Beijing:Tsinghua University Press,2013:246-249.
- [2]ALKHASAWNEH M S,TAY L T,NGAH U K,et al.Intelligent landslide system based on discriminant analysis and cascade-forward back-propagation network[J].Arabian journal for science and engineering,2014,39(7):5575-5584.
- [3]PENG T M,HUBELE N F,KARADY G.Advancement in the application of neural networks for short-term load forecasting[J].IEEE transactions on power systems,1992,7(1):250-257.
- [4]PAO Y H,PARK G H,SOBAJIC D J.Learning and generalization characteristics of the random vector functional-link net[J].Neurocomputing,1994,6(2):163-180.
- [5]ZHANG L,SUGANTHAN P N.A comprehensive evaluation of random vector functional link networks[J].Information sciences,2016,367:1094-1105.
- [6]王超,侯远龙,侯润明,等.贝叶斯正则化的LMBP神经网络在电气检测系统中的应用[J].机械制造与自动化,2016(4):184-188.WANG Chao,HOU Yuanlong,HOU Runming,et al.Application of Bayesian regularized LMBP neural network in electrical detection system[J].Mechanical manufacturing and automation,2016(4):184-188.
- [7]赵铭扬.基于神经网络的短期电力负荷预测研究[D].银川:宁夏大学,2016.ZHAO Mingyang.Research on short-term power load forecasting based on neural network[D].Yinchuan:Ningxia University,2016.
- [8]UCI.UCI machine learning repository[EB/OL].[2013-04-04].http://archive.ics.uci.edu/ml.
- [9]FERNáNDEZ-DELGADO M,CERNADAS E,BARRO S,et al.Do we need hundreds of classifiers to solve real world classification problems[J].Journal of machine learning research,2014,15(1):3133-3181.
- [10]DEM?AR J.Statistical comparisons of classifiers over multiple datasets[J].Journal of machine learning research,2006,7(1):1-30.
- [11]NEMENYI P.Distribution-free multiple comparisons[J].Biometrics,1962,18(2):263-268.