基于大数据分析的消费额度估计模型Consumer credit estimation model based on big data analysis
时元宁
摘要(Abstract):
基于SARIMA的消费额度估计模型,未结合大数据方法进行消费额度估计,采用的数据缺乏科学性,导致获取的消费额度估计结果不准确,为此设计基于大数据分析的ARIMA消费额度估计模型。通过Hadoop平台获取以往消费额度的大数据初步分析,构建以往消费总额的时间序列,采用一阶差分、季节性差分以及对数转换方法获取平稳性时间序列,使用ARIMA模型对时间序列进行分析构建基于大数据分析的ARIMA消费额度估计模型,采用MAPE衡量模型检验所设计模型的估计能力,确保该模型可用于消费额度的准确估计。实验结果表明,所设计的模型消费额度估计准确度高达99.7%,可用于消费额度的准确估计。
关键词(KeyWords): Hadoop平台;大数据;时间序列;消费额度;ARIMA模型;对数转换
基金项目(Foundation): 2017年度青海省社科规划年度项目(17046);; 2017年青海大学中青年科研基金项目(2017-QSY-18)~~
作者(Author): 时元宁
DOI: 10.16652/j.issn.1004-373x.2018.24.036
参考文献(References):
- [1]刘卫东,仲伟周,石清.2020年中国能源消费总量预测:基于定基能源消费弹性系数法[J].资源科学,2016,38(4):658-664.LIU Weidong,ZHONG Weizhou,SHI Qing. Forecast of China′s total energy consumption in 2020 based on method of fixed base energy consumption elasticity coefficient[J]. Resources science,2016,38(4):658-664.
- [2]张丽,牛惠芳.基于SARIMA模型的居民消费价格指数预测分析[J].数理统计与管理,2013,32(1):1-6.ZHANG Li,NIU Huifang. The predictive analysis of consumer price index based on SARIMA model[J]. Application of statistics and management,2013,32(1):1-6.
- [3]桂梅,刘莲花.基于ARIMA模型对海南省社会消费品零售总额的预测[J].数学的实践与认识,2017,47(3):25-30.GUI Mei,LIU Lianhua. Prediction of the total retail sales of consumer goods based on the ARIMA model[J]. Mathematics in practice and theory,2017,47(3):25-30.
- [4]李敏波,王海鹏,陈松奎,等.工业大数据分析技术与轮胎销售数据预测[J].计算机工程与应用,2017,53(11):100-109.LI Minbo,WANG Haipeng,CHEN Songkui,et al. Data analysis of industrial big data and sales forecast of tyre industry[J].Computer engineering and applications,2017,53(11):100-109.
- [5]王娜.基于大数据的碳价预测[J].统计研究,2016,33(11):56-62.WANG Na. Forecasting of carbon price based on big data[J].Statistical research,2016,33(11):56-62.
- [6]艾兵,董明刚.基于误差校正的能源消费总量预测方法[J].桂林理工大学学报,2016,36(2):388-394.AI Bing,DONG Minggang. Prediction method of total energy consumption based on error adjustment[J]. Journal of Guilin University of Technology,2016,36(2):388-394.
- [7]龙映宏,李布明.关于旅游消费者购买指数预测建模仿真研究[J].计算机仿真,2015,32(12):455-458.LONG Yinghong,LI Buming. Modeling and simulation of purchase index prediction for tourism consumers[J]. Computer simulation,2015,32(12):455-458.
- [8] ZHAO Y,LUO X,DENG L. A CBR-based and MAHP-based customer value prediction model for new product development[J]. The scientific world journal,2014,2014:1-18.
- [9]蒋辉,张波.支持向量回归特征提取的ARMA准则:中国社会消费品零售总额预测的实证研究[J].统计与信息论坛,2012,27(7):3-7.JIANG Hui,ZHANG Bo. ARMA criterion of feature extraction in support vector regression:empirical research of our national social total retail sales of consumer goods prediction[J]. Statistics&information forum,2012,27(7):3-7.
- [10] ONOYAMA H,RYU C,SUGURI M,et al. Nitrogen prediction model of rice plant at panicle initiation stage using ground-based hyperspectral imaging:growing degree-days integrated model[J]. Precision agriculture,2015,16(5):558-570.