机器视觉在生球团含水率预测中的应用Application of machine vision in water content rate prediction of green pellets
齐家栋,刘琼,熊湾
摘要(Abstract):
为了实现对生球团含水率的无接触式快速检测,建立生球团含水率预测模型。以铁精矿生球团为研究对象,利用中值滤波器去除图像噪声,再提取生球团图像的灰度直方图特征(最大概率灰度、平均灰度、标准方差、平滑度、标准偏差、峰态、偏斜度)及灰度共生矩阵纹理特征(能量、熵、对比度、相关性),分别以其为输入指标,建立粒子群优化的支持向量机回归预测模型对含水率进行预测,比较不同输入特征的预测精度。结果表明:灰度直方图特征预测结果的平均绝对误差和平均相对误差分别为0.037 4和0.524,灰度共生矩阵纹理特征预测结果的平均绝对误差和平均相对误差分别为0.020 1和0.284 5;灰度共生矩阵纹理特征预测精度高于灰度直方图特征预测精度。
关键词(KeyWords): 生球团;含水率;机器视觉;图像处理;特征提取;支持向量机回归
基金项目(Foundation): 国家重大科学设备开发专项(2013YQ040861);; 武汉科技大学研究生教育教学改革研究项目(YJG201517)~~
作者(Author): 齐家栋,刘琼,熊湾
DOI: 10.16652/j.issn.1004-373x.2018.20.020
参考文献(References):
- [1]王纪元,阎丽娟.球团矿质量分层综合评价方法研究[J].烧结球团,2015,40(3):17-21.WANG Jiyuan,YAN Lijuan. Study on stratified comprehensive evaluation method of pellet quality[J]. Sintering and pelletizing,2015,40(3):17-21.
- [2]亢立明,刘曙光,马明鑫,等.水分对冀东磁铁矿成球性能的影响[J].河北理工学院学报,2006,28(3):18-20.KANG Liming,LIU Shuguang,MA Mingxin,et al. Influence of moisture on pelletizing properties of Jidong magnetite concentrates fines[J]. Journal of Hebei Institute of Technology,2006,28(3):18-20.
- [3] KITA Y,ISHIKAWA H,MASUDA T. Guest editorial:machine vision applications[J]. International journal of computer vision,2017,122(2):191-192.
- [4] JAHEDSARAVANI A,MASSINAEI M,MARHABAN M. Development of a machine vision system for real-time monitoring and control of batch flotation process[J]. International journal of mineral processing,2017,167:16-26.
- [5]刁万英,刘刚.基于数字图像估算不同密度表层土壤含水率[J].灌溉排水学报,2017,36(4):26-30.DIAO Wanying,LIU Gang. Estimating water content in soils of different bulk densities using digital image[J]. Journal of irrigation and drainage,2017,36(4):26-30.
- [6]李晓斌,郭玉明,崔清亮,等.用图像法分析茄子在冻干过程中的水分动态运移规律[J].农业工程学报,2016,32(1):304-311.LI Xiaobin,GUO Yuming,CUI Qingliang,et al. Moisture diffusion and transfer dynamic analysis of eggplant during vacuum freeze-drying based on image processing technique[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(1):304-311.
- [7] OGAWA T,ADACHI S. Measurement of moisture profiles in pasta during rehydration based on image processing[J]. Food&bioprocess technology,2014,7(5):1465-1471.
- [8]郭庆春,王素娟,何振芳.基于BP人工神经网络的土壤含水量预测模型的研究[J].山东农业科学,2012,44(12):11-15.GUO Qingchun,WANG Sujuan,HE Zhenfang. Study on forecasting model of soil water content based on BP artificial neural network[J]. Shandong agricultural sciences, 2012, 44(12):11-15.
- [9]段史江,宋朝鹏,马力,等.基于图像处理的烘烤过程中烟叶含水量检测[J].西北农林科技大学学报(自然科学版),2012,40(5):74-80.DUAN Shijiang,SONG Zhaopeng,MA Li,et al. Prediction of tobacco leaf′s water contents during bulk curing process based on image processing technique[J]. Journal of Northwest A&F University(Natural science edition),2012,40(5):74-80.
- [10]詹攀,谢守勇,刘军,等.基于支持向量机回归的鲜烟叶含水量预测模型[J].西南大学学报(自然科学版),2016,38(4):165-170.ZHAN Pan,XIE Shouyong,LIU Jun,et al. A prediction model of water content of fresh tobacco leaves based on support vector machine regression[J]. Journal of Southwest University(Natural science),2016,38(4):165-170.
- [11]张国翊,胡铮.改进BP神经网络模型及其稳定性分析[J].中南大学学报(自然科学版),2011,42(1):115-124.ZHANG Guoyi,HU Zheng. Improved BP neural network model and its stability analysis[J]. Journal of Central South University(Science and technology),2011,42(1):115-124.
- [12]张铮,徐超,任淑霞.数字图像处理与机器视觉[M].北京:人民邮电出版社,2014.ZHANG Zheng,XU Chao,REN Shuxia. Digital image processing and machine vision[M]. Beijing:Posts&Telecom Press,2014.
- [13]周鸿达,张玉荣,王伟宇,等.基于图像处理玉米水分检测方法研究[J].河南工业大学学报(自然科学版),2016,37(3):96-100.ZHOU Hongda,ZHANG Yurong,WANG Weiyu,et al. Water content detection method of corn grain based on image analysis[J]. Journal of Henan University of Technology(Natural science edition),2016,37(3):96-100.
- [14]江朝晖,杨春合,周琼,等.基于图像特征的越冬期冬小麦冠层含水率检测[J].农业机械学报,2015,46(12):260-267.JIANG Zhaohui,YANG Chunhe,ZHOU Qiong,et al. Detection of canopy water content of winter wheat during wintering period based on image features[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(12):260-267.
- [15] HENDRAWAN Y,MURASE H. Sunagoke moss water content sensing using machine vision:texture analysis and bio-inspired algorithms[C]. IFAC proceedings volumes,2010,43(26):268-273.
- [16]杜树新,吴铁军.用于回归估计的支持向量机方法[J].系统仿真学报,2003,15(11):1580-1585.DU Shuxin,WU Tiejun. Support vector machines for regression[J]. Journal of system simulation,2003,15(11):1580-1585.
- [17] DHAS J E R,KUMANAN S. Evolutionary fuzzy SVR modeling of weld residual stress[J]. Applied soft computing,2016,42(2):423-430.
- [18]安爱民,祁丽春,丑永新,等.基于粒子群优化的溶解氧质量浓度支持向量回归机[J].北京工业大学学报,2016,42(9):1318-1323.AN Aimin,QI Lichun,CHOU Yongxin,et al. Support vector regression using particle swarm optimization for dissolved oxygen concentration[J]. Journal of Beijing University of Technology,2016,42(9):1318-1323.