基于神经网络的二次谐波检测研究Research on second harmonic detection based on neural network
郝淑娟,何巍巍,刘永皓,崔海瑛,邱忠阳
摘要(Abstract):
针对传统检测方法在检测电网谐波时,一直存在对二次谐波电压及电流含有率检测不准确,谐波失真的问题,提出基于神经网络的二次谐波检测方法。以谐波检测原理为依据,采用奈奎斯特定理,对二次谐波信号进行采集,并通过小波变换将二次谐波信号划分为低频信号和高频信号,通过FFT算法处理低频信号,并对谐波信号进行自适应噪声对消处理,引入神经网络算法,选取激活函数及初始权值,实现对二次谐波的检测。实验结果表明,采用改进方法对二次谐波的检测,相比传统检测方法,其检测结果准确,失真率降低,具有一定的实用性。
关键词(KeyWords): 电网;二次谐波检测;神经网络;小波变换;噪声对消;谐波失真
基金项目(Foundation): 黑龙江省青年科学基金项目(QC2015066);; 大庆师范学院自然科学基金项目(12ZR13)~~
作者(Author): 郝淑娟,何巍巍,刘永皓,崔海瑛,邱忠阳
DOI: 10.16652/j.issn.1004-373x.2018.18.040
参考文献(References):
- [1]曹英丽,尹希哲.基于BP神经网络和全相位快速傅里叶变换的电力系统谐波检测技术研究[J].现代电子技术,2017,40(1):125-128.CAO Yingli,YIN Xizhe.Research on power system harmonic detection technology based on BP neural network and all-phase fast Fourier transform[J].Modern electronics technique,2017,40(1):125-128.
- [2]刘叶鹏,孙孝君,庄新颖,等.基于深度神经网络的轴承状态监测研究[J].制造技术与机床,2017(8):76-80.LIU Yepeng,SUN Xiaojun,ZHUANG Xinying,et al.Bearing condition monitoring based on deep neural networks[J].Manufacturing technology&machine tool,2017(8):76-80.
- [3]熊贤成,杨春平,敖明武,等.基于BP神经网络的云相态检测方法研究[J].遥感技术与应用,2015,30(4):714-718.XIONG Xiancheng,YANG Chunping,AO Mingwu,et al.A research on cloud phase detection based on BP neural network[J].Remote sensing technology and application,2015,30(4):714-718.
- [4]陈志勇,杨佩,彭力,等.基于BP神经网络的驾驶员疲劳监测研究[J].计算机科学,2015,42(z1):67-69.CHEN Zhiyong,YANG Pei,PENG Li,et al.Fatigue driving monitoring based on BP neural network[J].Computer science,2015,42(S1):67-69.
- [5]左艳丽,马志强,左宪禹.基于改进卷积神经网络的人体检测研究[J].现代电子技术,2017,40(4):12-15.ZUO Yanli,MA Zhiqiang,ZUO Xianyu.Research on pedestrian detection based on improved convolutional neural network[J].Modern electronics technique,2017,40(4):12-15.
- [6]李志明.基于卷积神经网络的虹膜活体检测算法研究[J].计算机工程,2016,42(5):239-243.LI Zhiming.Research on iris liveness detection algorithm based on convolutional neural network[J].Computer engineering,2016,42(5):239-243.
- [7]吴春华,冯夏云,袁同浩,等.基于BP神经网络的光伏故障电弧检测方法研究[J].太阳能学报,2016,37(11):2958-2964.WU Chunhua,FENG Xiayun,YUAN Tonghao,et al.Photovoltaic arc fault detection method based on BP network[J].Acta Energiae Solaris Sinica,2016,37(11):2958-2964.
- [8]潘翔.基于神经网络的物联网设备环境监测技术研究[J].现代电子技术,2017,40(3):12-14.PAN Xiang.Research on Io T equipment environmental monitoring technology based on neural network[J].Modern electronics technique,2017,40(3):12-14.
- [9]贺静,徐成武,任密林.基于概率神经网络的IPv6入侵检测技术研究[J].太原理工大学学报,2017,48(6):969-972.HE Jing,XU Chengwu,REN Milin.Research on IPv6 intrusion detection technology based on PNN[J].Journal of Taiyuan University of Technology,2017,48(6):969-972.
- [10]叶圣超,朱希安.基于PSO神经网络的定子电流信号谐波检测[J].科技通报,2017,33(5):198-202.YE Shengchao,ZHU Xi’an.Study on algorithm of stator current signal harmonic detection based on PSO neural network[J].Bulletin of science and technology,2017,33(5):198-202.