改进的分段主成分分析算法及其在前列腺分割中的应用Improved modular principal component analysis algorithm and its application in prostate image segmentation
宋建萍,石勇涛
摘要(Abstract):
主成分分析(PCA)作为形状建模中的经典算法,在训练阶段考虑训练样本的整体信息,而忽略了样本的局部细节信息。分段主成分分析(MPCA)针对PCA的不足改进了算法,在人脸识别应用中获得了比传统PCA更好的识别效果。但在MPCA中样本一般都被划分为同样大小的子样本块,没有考虑到实际的样本局部动态变化信息。这里根据初始样本的方差信息对MPCA算法进行改进,将样本划分成尺寸大小不一的多类样本(分段样本),然后分别对分段样本做主成分分析,得到原始样本的分段PCA模型。将该模型应用于前列腺超声图像分割实验,结果表明其分割效果优于传统的PCA算法和MPCA算法。
关键词(KeyWords): 医学超声图像分割;先验形状;分段样本;分段主成分分析;前列腺图像分割;信息提取
基金项目(Foundation): 国家自然科学基金资助项目(U1401252)~~
作者(Author): 宋建萍,石勇涛
DOI: 10.16652/j.issn.1004-373x.2018.13.014
参考文献(References):
- [1]黄建波,倪东,汪天富.基于先验概率和统计形状的前列腺超声图像自动分割方法[J].生物医学工程研究,2015,34(1):15-19.HUANG Jianbo,NI Dong,WANG Tianfu.Automatic segmentation method based on probability priors and statistical shape for prostate TRUS images[J].Journal of biomedical engineering research,2015,34(1):15-19.
- [2]RATHI Y,VASWANI N,TANNENBAUM A.A generic framework for tracking using particle filter with dynamic shape prior[J].IEEE transactions on image processing,2007,16(5):1370-1382.
- [3]BOUWMANS T,ZAHZAH E H.Robust PCA via principal component pursuit:a review for a comparative evaluation in video surveillance[J].Computer vision and image understanding,2014,122:22-34.
- [4]谢佩,吴小俊.分块多线性主成分分析及其在人脸识别中的应用研究[J].计算机科学,2015,42(3):274-279.XIE Pei,WU Xiaojun.Modular multilinear principal component analysis and application in face recognition[J].Computer science,2015,42(3):274-279.
- [5]CREMERS Daniel,KOHLBERGER Timo,SCHN?RR Christoph.Shape statistics in kernel space for variational image segmentation[J].Pattern recognition,2003,36(9):1929-1943.
- [6]GOTTUMUKKAL R,ASARI V K.An improved face recognition technique based on modular PCA approach[J].Pattern recognition letters,2004,25(4):429-436.
- [7]SHEN D G,DAVATZIKOS C.An adaptive-focus deformable model using statistical and geometric information[J].IEEE transactions on pattern recognition and machine intelligence,2007,22(7):1-8.
- [8]YANG J,ZHANG D,FRANGI A F,et al.Two-dimensional PCA:a new approach to appearance-based face representation and recognition[J].IEEE transactions on pattern analysis and machine intelligence,2004,26(1):131-137.
- [9]ZHANG L,ZHU P,HU Q,et al.A linear subspace learning approach via sparse coding[C]//2011 IEEE International Conference on Computer Vision.[S.l.]:IEEE,2011:755-761.
- [10]YAN P,XU S,TURKBEY B,et al.Discrete deformable model guided by partial active shape model for trus image segmentation[J].IEEE transactions on biomedical engineering,2010,57(5):1158-1166.