基于类内超平面距离度量模糊支持向量机的语音情感识别Speech emotion recognition based on fuzzy support vector machine and measurement of distance to intra-class hyperplane
张波,张雪英,陈桂军,孙颖
摘要(Abstract):
在智能人-机交互系统中,语音情感识别是目前的研究热点之一,支持向量机方法被广泛用于语音情感识别。然而,支持向量机方法存在噪声和野值敏感问题,往往难以进行精确识别。为了解决该问题,通过对隶属度函数进行深入研究,设计一种新的基于样本到类内超平面距离的隶属度函数,并基于该隶属度函数优化了模糊支持向量机分类超平面,从而提高了支持向量机的抗噪性和泛化能力。在多种情感语音库上进行实验仿真测试,结果表明,所提出的方法能够有效利用样本间的紧密度、边界样本点和过样本类中心的超平面来构造最优超平面,从而提高语音情感识别的准确率。
关键词(KeyWords): 语音情感识别;模糊支持向量机;隶属度函数;孤立点;类内超平面;精确识别
基金项目(Foundation): 国家自然科学基金资助项目(61371193)~~
作者(Author): 张波,张雪英,陈桂军,孙颖
DOI: 10.16652/j.issn.1004-373x.2018.16.041
参考文献(References):
- [1]张石清,李乐民,赵知劲.人机交互中的语音情感识别研究进展[J].电路与系统学报,2013,18(2):440-451.ZHANG Shiqing,LI Lemin,ZHAO Zhijin.A survey of speech emotion recognition in human computer interaction[J].Journal of circuits and systems,2013,18(2):440-451.
- [2]AYADI M E,KAMEL M S,KARRAY F.Survey on speechemotion recognition:features,classification schemes,and da-tabases[J].Pattern recognition,2011,44(3):572-587.
- [3]林奕琳,韦岗,杨康才.语音情感识别的研究进展[J].电路与系统学报,2007,12(1):90-98.LIN Yilin,WEI Gang,YANG Kangcai.A survey of emotionrecognition in speech[J].Journal of circuits and systems,2007,12(1):90-98.
- [4]尤鸣宇.语音情感识别的关键技术研究[D].杭州:浙江大学,2007.YOU Mingyu.Research on key technologies of speech emotionrecognition[D].Hangzhou:Zhejiang University,2007.
- [5]KHANCHANDANI K B,HUSSAIN M A.Emotion recognition using multilayer perceptron and generalized feed forward neural network[J].Journal of scientific&industrial research,2009,68(5):367-371.
- [6]LIN C F,WANG S D.Fuzzy support vector machines with automatic membership setting[J].Support vector machines:theory and applications,2005,177:233-254.
- [7]许翠云,业宁.基于类向心度的模糊支持向量机[J].计算机工程与科学,2014,36(8):1623-1628.XU Cuiyun,YE Ning.A novel fuzzy support vector machine based on the class centripetal degree[J].Computer engineering and science,2014,36(8):1623-1628.
- [8]刘开旻,吴小俊.一种基于新隶属度函数的模糊支持向量机[J].计算机工程,2016,42(4):155-159.LIU Kaimin,WU Xiaojun.A fuzzy support vector machine based on new membership function[J].Computer engineering,2016,42(4):155-159.
- [9]刘艳,钟萍,陈静,等.用于处理不平衡样本的改进近似支持向量机新算法[J].计算机应用,2014,34(6):1618-1621.LIU Yan,ZHONG Ping,CHEN Jing,et al.Modified proximal support vector machine algorithm for dealing with unbalanced samples[J].Journal of computer applications,2014,34(6):1618-1621.
- [10]彭桂兵.两种改进的模糊支持向量机[D].保定:河北大学,2010.PENG Guibing.Two improved fuzzy support vector machines[D].Baoding:Hebei University,2010.
- [11]LIN C F,WANG S D.Fuzzy support vector machines[J].IEEE transactions on neural networks,2002,13(2):464-471.
- [12]陈小娟,刘三阳,满英,等.一种新的模糊支持向量机方法[J].西安文理学院学报(自然科学版),2008,11(1):1-4.CHEN Xiaojuan,LIU Sanyang,MAN Ying,et al.A new fuzzy supportive vector machine algorithm[J].Journal of Xi’an University of Arts and Sciences:Natural science edition,2008,11(1):1-4.
- [13]WU Jianxin.Power mean SVM for large scale visual classification[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE,2012:2344-2351.
- [14]刘三阳,杜喆.一种改进的模糊支持向量机算法[J].智能系统学报,2007,2(3):30-33.LIU Sanyang,DU Zhe.An improved fuzzy support vector machine method[J].CAAI transactions on intelligent systems,2007,2(3):30-33.
- [15]杜喆.几类支持向量机变型算法的研究[D].西安:西安电子科技大学,2009.DU Zhe.Research on several kinds of support vector machine variant algorithms[D].Xi’an:Xidian University,2009.