ARIMA-SVM的物流需求预测模型Logistics demand forecasting model based on ARIMA-SVM
杨建成
摘要(Abstract):
物流需求是多种因素综合作用的结果,具有规律性和特殊性,变分十分复杂,导致当前物流需求预测模型的预测效果差,难以满足物流管理的实际应用要求。为了解决物流需求建模过程中存在的难题,提出基于ARIMA-SVM的物流需求预测模型。首先对当前物流需求预测的研究现状进行分析,找到引起物流需求预测效果的原因;然后选择差分自回归滑动平均模型对物流需求的规律性变化特点进行建模,支持向量机对物流需求的特殊性变化特点进行建模;最后采用权值方式确定物流需求预测的预测结果,并采用物流需求的预测实例分析模型的有效性。结果表明,ARIMA-SVM的物流需求预测结果要优于当前其他物流需求预测模型,为其他预测问题提供了一种建模工具。
关键词(KeyWords): 物流管理;随机性变化特点;ARIMA-SVM;权值的确定;预测模型;支持向量机
基金项目(Foundation):
作者(Author): 杨建成
DOI: 10.16652/j.issn.1004-373x.2018.09.040
参考文献(References):
- [1]赵秋红,汪寿阳,黎建强.物流管理中的优化方法与应用分析[M].北京:科学出版社,2006.ZHAO Qiuhong,WANG Shouyang,LI Jianqiang.Optimization methods and application analysis of logistics management[M].Beijing:Science Press,2006.
- [2]孙建丰,向小东.基于灰色线性回归组合模型的物流需求预测研究[J].工业技术经济,2007(10):146-148.SUN Jianfeng,XIANG Xiaodong.Research on logistics demand prediction based on grey linear regression combination model[J].Industrial technology and economy,2007(10):146-148.
- [3]王晓原,李军.灰色GM(1,1)模型在区域物流规模预测中的应用[J].武汉理工大学学报(交通科学与工程版),2005(3):415-417.WANG Xiaoyuan,LI Jun.The application of grey GM(1,1)model in the prediction of regional logistics scale[J].Journal of Wuhan University of Technology(transportation science and engineering),2005(3):415-417.
- [4]陈森,周峰.基于灰色系统理论的物流需求预测模型[J].统计与决策,2006(3):59-60.CHEN Sen,ZHOU Feng.Logistics demand forecasting model based on grey system theory[J].Statistics and decision,2006(3):59-60.
- [5]魏连雨,庞明宝.基于神经网络的物流量预测[J].长安大学学报(自然科学版),2004,24(6):55-59.WEI Lianyu,PANG Mingbao.Prediction of material flow based on neural network[J].Journal of Chang’an University(natural science edition),2004,24(6):55-59.
- [6]尹艳玲.基于自适应神经网络的物流需求预测研究[J].河南理工大学学报(自然科学版),2010,29(5):700-704.YIN Yanling.Research on logistics demand prediction based on adaptive neural network[J].Journal of Henan Polytechnic University(natural science edition),2010,29(5):700-704
- [7]后锐,张毕西.基于MLP神经网络的区域物流需求预测方法及其应用[J].系统工程理论与实践,2005,22(12):43-47.HOU Rui,ZHANG Bixi.The prediction method of regional logistics demand based on MLP neural network and its application[J].System engineering theory and practice,2005,22(12):43-47.
- [8]唐伟鸿,李文锋.基于时间序列的支持向量机在物流预测中的应用[J].物流科技,2005(1):8-11.TANG Weihong,LI Wenfeng.Application of time series based support vector machines in logistics forecasting[J].Logistics science,2005(1):8-11.
- [9]胡燕祝,吕宏义.基于支持向量回归机的物流需求预测模型研究[J].物流技术,2008,27(5):66-68.HU Yanzhu,LüHongyi.Research on logistics demand forecasting model based on support vector regression machine research[J].Logistics technology,2008,27(5):66-68
- [10]耿立艳,赵鹏,张占福.基于二阶振荡微粒群最小二乘支持向量机的物流需求预测[J].计算机应用研究,2012,29(7):2558-2560.GENG Liyan,ZHAO Peng,ZHANG Zhanfu.Logistics demand prediction based on two order oscillating particle swarm least squares support vector machine[J].Computer application research,2012,29(7):2558-2560.
- [11]初良勇,田质广,谢新连.组合预测模型在物流需求预测中的应用[J].大连海事大学学报,2004,30(4):43-46.CHU Liangyong,TIAN Zhiguang,XIE Xinlian.Application of combination forecasting model in the logistics demand forecasting[J].Journal of Dalian Maritime University,2004,30(4):43-46.
- [12]闫莉,薛惠峰,陈青.基于灰色马尔可夫模型的区域物流规模预测[J].西安工业大学学报,2009,29(5):495-497.YAN Li,XUE Huifeng,CHEN Qing.Prediction of the scale of regional logistics based on Grey Markov model[J].Journal of Xi’an Technological University,2009,29(5):495-497.