基于改进粒子滤波的稀疏子空间单目标跟踪算法Sparse subspace single target tracking algorithm based on improved particle filtering
宫海洋,任红格,史涛,李福进
摘要(Abstract):
针对单目标跟踪问题,提出基于改进粒子滤波的稀疏子空间单目标跟踪算法。在改进的粒子滤波中提出将样本分为正、负和过渡样本,减小粒子退化带来的影响,通过仿真实验验证改进粒子滤波器可提高目标跟踪的鲁棒性。仿照人眼视觉神经系统,将稀疏子空间引入粒子滤波中,建立一个稀疏最优化模型,获得稀疏矩阵,稀疏子空间有针对性地对目标进行聚类,得到聚类中心位置实现目标跟踪。经过在相同视频序列实验与基本粒子滤波同mean-shift算法目标跟踪的实验对比可知,单目标跟踪的快速性和鲁棒性得到了很大提高。
关键词(KeyWords): 目标跟踪;贝叶斯滤波;粒子滤波;稀疏子空间;过渡样本;聚类中心
基金项目(Foundation): 国家自然科学基金(61203343);; 河北省自然科学基金(E2014209106);; 河北省高等学校科学技术研究青年基金项目(QN2016102,QN2016105)~~
作者(Author): 宫海洋,任红格,史涛,李福进
DOI: 10.16652/j.issn.1004-373x.2018.13.003
参考文献(References):
- [1]WANG H,YUAN C,LUO G,et al.Action recognition using linear dynamic systems[J].Pattern recognition,2013,46(6):1710-1718.
- [2]YANG S,YUAN C,WANG H,et al.Combining sparse appearance features and dense motion features via random forest for action detection[C]//2013 IEEE International Conference on Acoustics.[S.l.]:IEEE,2013:2415-2419.
- [3]许婉君,侯志强,余旺盛,等.基于颜色和空间信息的多特征融合目标跟踪算法[J].应用光学,2015,36(5):755-761.XU Wanjun,HOU Zhiqiang,YU Wangsheng,et al.Multi feature fusion target tracking algorithm based on color and space information[J].Applied optics,2015,36(5):755-761.
- [4]陈芸,吴飞,荆晓远,等.鲁棒低秩稀疏表示的在线目标跟踪[J].计算机工程与设计,2016,37(4):1062-1066.CHEN Yun,WU Fei,JING Xiaoyuan,et al.Robust low rank sparse representation for online target tracking[J].Computer engineering and design,2016,37(4):1062-1066.
- [5]赵二群.视觉神经系统仿生模型及其应用研究[D].长沙:湖南大学,2014.ZHAO Erqun.Bionic model of visual neural system and its application research[D].Changsha:Hunan University,2014.
- [6]HINAULT T,DUFAU S,LEMAIRE P.Strategy combination in human cognition:a behavioral and ERP study in arithmetic[J].Psychonomic bulletin&review,2015,22(1):190-199.
- [7]OLSHAUSEN B A,FIELD D J.Natural image statistics and efficient coding[J].Network,2009,7(2):333.
- [8]周小娟,李春晓.基于偏最小二乘分析和稀疏表示的目标跟踪算法[J].重庆邮电大学学报(自然科学版),2014,26(1):104-110.ZHOU Xiaojuan,LI Chunxiao.Target tracking algorithm based on partial least squares analysis and sparse representation[J].Journal of Chongqing University of Posts and Telecommunications(natural science edition),2014,26(1):104-110.
- [9]梁锦锦,吴德.稀疏L1范数最小二乘支持向量机[J].计算机工程与设计,2014,35(1):293-296.LIANG Jinjin,WU De.Sparse L1 norm least squares support vector machine[J].Computer engineering and design,2014,35(1):293-296.
- [10]CHEN Guoxin,CHEN Shengchang,WANG Hanchuang,et al.Sparse reconfiguration of geophysical data based on L0 norm minimization[J].Applied geophysics,2013,10(2):181-190.
- [11]BAI T,LI Y F.Robust visual tracking with structured sparse representation appearance model[J].Pattern recognition,2012,45(6):2390-2404.
- [12]TIBSHIRANI R.Regression shrinkage and selection via the Lasso[J].Journal of the royal statistical society,2011,73(3):273-282.