海量数据的支持向量机优化挖掘方法Support vector machine based optimization mining method of massive data
李清霞
摘要(Abstract):
传统支持向量机挖掘方法可以对领域数据实现挖掘,但在复杂多变环境下数据挖掘离散程度较大。提出海量数据的支持向量机优化挖掘方法,构造静态粒子空间,局限海量数据挖掘离散程度,形成小规模的、多簇团的粒子挖掘数据集;将单粒子挖掘数据进行离散性拟合,以多簇团粒子整合离散运算,保证挖掘计算进行周期性运行;对同轨挖掘计算进行条件约束,实现小离散程度的数据挖掘。仿真实验验证结果表明,支持向量机优化挖掘方法在复杂多变环境下具有较高的稳定性,并且挖掘离散度小、挖掘信息精度较高。
关键词(KeyWords): 海量数据;支持向量机;多簇团粒子;数据拟合;整合运算;挖掘离散;优化方法
基金项目(Foundation): 中国教师发展基金会(CTF120715);; 广东理工学院质量工程项目基金(JXGG2017023);广东理工学院精品资源共享课程项目基金(JPKC2016001)~~
作者(Author): 李清霞
DOI: 10.16652/j.issn.1004-373x.2018.06.033
参考文献(References):
- [1]肖白,聂鹏,穆钢,等.基于多级聚类分析和支持向量机的空间负荷预测方法[J].电力系统自动化,2015,39(12):56-61.XIAO Bai,NIE Peng,MU Gang,et al.A spatial load forecasting method based on multilevel clustering analysis and support vector machine[J].Automation of electric power systems,2015,39(12):56-61.
- [2]王宁,谢敏,邓佳梁,等.基于支持向量机回归组合模型的中长期降温负荷预测[J].电力系统保护与控制,2016,44(3):92-97.WANG Ning,XIE Min,DENG Jialiang,et al.Mid-long term temperature-lowering load forecasting based on combination of support vector machine and multiple regression[J].Power system protection and control,2016,44(3):92-97.
- [3]焦卫东,林树森.整体改进的基于支持向量机的故障诊断方法[J].仪器仪表学报,2015,36(8):1861-1870.JIAO Weidong,LIN Shusen.Overall-improved fault diagnosis approach based on support vector machine[J].Chinese journal of scientific instrument,2015,36(8):1861-1870.
- [4]王瑜,苑津莎,尚海昆,等.组合核支持向量机在放电模式识别中的优化策略[J].电工技术学报,2015,30(2):229-236.WANG Yu,YUAN Jinsha,SHANG Haikun,et al.Optimization strategy research on combined-kernel support vector machine for partial discharge pattern recognition[J].Transactions of China electrotechnical society,2015,30(2):229-236.
- [5]薛浩然,张珂珩,李斌,等.基于布谷鸟算法和支持向量机的变压器故障诊断[J].电力系统保护与控制,2015,43(8):8-13.XUE Haoran,ZHANG Keheng,LI Bin,et al.Fault diagnosis of transformer based on the cuckoo search and support vector machine[J].Power system protection and control,2015,43(8):8-13.
- [6]张玉欣,程志峰,徐正平,等.参数寻优支持向量机在基于光声光谱法的变压器故障诊断中的应用[J].光谱学与光谱分析,2015,35(1):10-13.ZHANG Yuxin,CHENG Zhifeng,XU Zhengping,et al.Application of optimized parameters SVM based on photoacoustic spectroscopy method in fault diagnosis of power transformer[J].Spectroscopy and spectral analysis,2015,35(1):10-13.
- [7]李霄,王昕,郑益慧,等.基于改进最小二乘支持向量机和预测误差校正的短期风电负荷预测[J].电力系统保护与控制,2015,43(11):63-69.LI Xiao,WANG Xin,ZHENG Yihui,et al.Short-term wind load forecasting based on improved LSSVM and error forecasting correction[J].Power system protection and control,2015,43(11):63-69.
- [8]梁礼明,钟震,陈召阳.支持向量机核函数选择研究与仿真[J].计算机工程与科学,2015,37(6):1135-1141.LIANG Liming,ZHONG Zhen,CHEN Zhaoyang.Research and simulation of kernel function selection for support vector machine[J].Computer engineering and science,2015,37(6):1135-1141.
- [9]SHAO Y H,HUA X Y,LIU L M,et al.Combined outputs framework for twin support vector machines[J].Applied intelligence,2015,43(2):424-438.
- [10]GUI G,PAN H,LIN Z,et al.Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection[J].KSCE journal of civil engineering,2017,21(2):523-534.
- [11]THARWAT A,HASSANIEN A E,ELNAGHI B E.A BAbased algorithm for parameter optimization of support vector machine[J].Pattern recognition letters,2017,93(7):13-22.