基于改进蚁群算法的移动机器人全局路径规划Global path planning based on improved ant colony algorithm for mobile robot
占伟,屈军锁,芦鑫,侯磊超
摘要(Abstract):
蚁群算法作为智能化仿生优化算法,其自组织性和智能性对研究全局路径规划问题具有指导性意义,基于此提出一种改进蚁群算法。首先采用栅格法建立环境模型并对传统的蚁群算法进行改进,对算法的启发因子和信息素更新策略进行研究与改进。仿真结果表明,改进的蚁群算法相对传统的蚁群算法具有收敛速度快和优化性能良好的特点。
关键词(KeyWords): 仿生优化;蚁群算法;栅格法;移动机器人;路径规划;启发因子;信息素更新策略
基金项目(Foundation): 国家自然科学基金(51405387);; 陕西省自然科学基金资助项目(2018JM6120);; 陕西省国际科技合作计划资助项目(2018KW-026);; 西安市科技计划资助项目(201805040YD18CG24(6));; 咸阳市科技局科技计划资助项目(2017k01-25-12)~~
作者(Author): 占伟,屈军锁,芦鑫,侯磊超
DOI: 10.16652/j.issn.1004-373x.2018.24.042
参考文献(References):
- [1]史恩秀,陈敏敏,李俊,等.基于蚁群算法的移动机器人全局路径规划方法研究[J].农业机械学报,2014,45(6):53-57.SHI Enxiu,CHEN Minmin,LI Jun,et al. Research on method of global path-planning for mobile robot based on ant-colony algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(6):53-57.
- [2]屈鸿,黄利伟,柯星.动态环境下基于改进蚁群算法的机器人路径规划研究[J].电子科技大学学报,2015,44(2):260-265.QU Hong,HUANG Liwei,KE Xing. Research of improved antcolony based robot path planning under dynamic environment[J]. Journal of University of Electronic Science and Technologyof China,2015,44(2):260-265.
- [3] YU J,LAVALLE S M. Optimal multi-robot path planning ongraphs:structure and computational complexity[J/OL].[2015-07-12]. https://arxiv.org/pdf/1507.03289.pdf.
- [4] LI J,DONG T,LI Y. Research on task allocation in multiplelogistics robots based on an improved ant colony algorithm[C]//Proceedings of International Conference on Robotics and Auto-mation Engineering. Jeju:IEEE,2016:17-20.
- [5] LIU J,YANG J,LIU H,et al. An improved ant colony algo-rithm for robot path planning[J]. Soft computing,2017,21(19):5829-5839.
- [6]张成,凌有铸,陈孟元.改进蚁群算法求解移动机器人路径规划[J].电子测量与仪器学报,2016,30(11):1758-1764.ZHANG Cheng,LING Youzhu,CHEN Mengyuan. Path plan-ning of mobile robot based on an improved ant colony algo-rithm[J]. Journal of electronic measurement and instrumenta-tion,2016,30(11):1758-1764.
- [7]牛治永,李炎,李晓岚.基于改进蚁群算法的机器人路径规划[J].自动化技术与应用,2011,30(7):1-4.NIU Zhiyong,LI Yan,LI Xiaolan. Path planning of detectingrobot based on improved ant colony algorithm[J]. Techniquesof automation and applications,2011,30(7):1-4.
- [8]肖国宝,严宣辉.一种新型协作多机器人路径规划算法[J].计算机科学,2013,40(4):217-220.XIAO Guobao,YAN Xuanhui. New cooperative multi-robot path planning algorithm[J]. Computer science,2013,40(4):217-220.
- [9]邱莉莉,郑建立.基于改进蚁群算法的机器人路径规划[J].信息技术,2015(6):150-152.QIU Lili,ZHENG Jianli. Based on improved ant colony algorithm for robot path planning[J]. Information technology,2015(6):150-152.
- [10]王忠民,曹栋.基于蚁群算法的行为识别特征优选方法[J].西安邮电大学学报,2014,19(1):73-77.WANG Zhongmin,CAO Dong. A feature selection method for behavior recognition based on ant colony algorithm[J]. Journal of Xi’an University of Posts and Telecommunications,2014,19(1):73-77.
- [11]游晓明,刘升,吕金秋.一种动态搜索策略的蚁群算法及其在机器人路径规划中的应用[J].控制与决策,2017,32(3):552-556.YOU Xiaoming,LIU Sheng,LüJinqiu. Ant colony algorithm based on dynamic search strategy and its application on path planning of robot[J]. Control and decision,2017,32(3):552-556.