基于支持向量机的输变电工程造价预测模型研究Research on prediction model of power transmission and transformation project cost based on support vector machine
孔军,曹小宇,肖峰
摘要(Abstract):
针对影响输变电工程造价的因素较多,且各个因素之间相互联系,形成一个相互交叠的网络,从而导致造价预测难度较大,精度较低的问题。建立基于支持向量机的输变电工程造价预测模型,其以输变电工程造价影响因素为输入自变量,预测造价为输出值,通过支持向量机求解回归方程,并通过交叉验证来确定模型的相关参数,从而确定输变电工程造价预测模型,进而通过模型来预测输变电工程造价。最后通过样本数据来对模型进行训练,并对模型进行验证,证明了模型的准确性。
关键词(KeyWords): 输变电工程;支持向量机;造价预测模型;交叉验证;回归方程;模型验证
基金项目(Foundation): 国家自然科学基金项目(60902031)~~
作者(Author): 孔军,曹小宇,肖峰
DOI: 10.16652/j.issn.1004-373x.2018.04.032
参考文献(References):
- [1]解晗.基于管控要点动态评价的输变电工程全面造价管控研究[D].北京:华北电力大学,2015.XIE Han.Research on total cost management and control of transmission and transformation project based on the dynamic evaluation of control points[D].Beijing:North China Electric Power University,2015.
- [2]周昊,钱亦雯,王闰瑶.基于工程量清单计价模式的输变电工程造价风险评估模型研究[J].现代电子技术,2017,40(18):23-25.ZHOU Hao,QIAN Yiwen,WANG Runyao.Research on cost risk assessment model of power transmission and transformation project based on bill of quantity valuation mode[J].Modern electronics technique,2017,40(18):23-25.
- [3]王佼,丁莉.500 k V架空输电线路工程造价主要影响因素分析[J].东北电力大学学报,2012,32(5):9-11.WANG Jiao,DING Li.Analysising the main impact factors on the build price of the 500 k V power line road engineering[J].Journal of Northeast Electric Power University,2012,32(5):9-11.
- [4]雷雨.变电站建设工程造价影响因素分析及控制策略研究[D].北京:华北电力大学,2015.LEI Yu.Analysis of the influence factors of construction cost of substation and control strategy[D].Beijing:North China Electric Power University,2015.
- [5]位小记,谢红,郭慧.基于支持向量机的数字调制识别算法[J].电子设计工程,2011,19(6):89-91.WEI Xiaoji,XIE Hong,GUO Hui.Digital modulation recognition algorithm based on support vector machine[J].Electronic design engineering,2011,19(6):89-91.
- [6]张东东.基于遗传算法的支持向量机分类算法[J].电子科技,2015,28(12):32-35.ZHANG Dongdong.Support vector machine classification algorithm based on genetic algorithms[J].Electronic science and technology,2015,28(12):32-35.
- [7]廖龙飞,王晶.面向多输出系统的启发式支持向量机回归[J].北京化工大学学报(自然科学版),2011,38(2):118-123.LIAO Longfei,WANG Jing.Heuristic support vector machine regression for multi output system[J].Journal of Beijing University of Chemical Technology(Natural science edition),2011,38(2):118-123.
- [8]李杰.改进粒子群算法优化支持向量机的工程造价预测[J].计算机系统应用,2016,25(6):202-206.LI Jie.Project cost forecasting based on improved particle swarm algorithm optimizing support vector machine[J].Computer systems&applications,2016,25(6):202-206.
- [9]戴栋,黄筱婷,代洲,等.基于支持向量机的输电线路覆冰回归模型[J].高电压技术,2013,39(11):2822-2828.DAI Dong,HUANG Xiaoting,DAI Zhou,et al.Regression model for transmission lines icing based on support vector machine[J].High voltage engineering,2013,39(11):2822-2828.
- [10]尹世锋.架空输电线路覆冰厚度预测的数据融合方法研究[D].昆明:昆明理工大学,2013.YIN Shifeng.Research on data fusion method of icing thickness prediction for overhead transmission lines[D].Kunming:Kunming University of Science and Technology,2013.