基于机器学习算法的网络入侵检测Network intrusion detection based on machine learning algorithm
张夏
摘要(Abstract):
网络入侵的频率越来越高,严重危害了网络安全。为了获得高正确率的网络入侵检测结果,针对当前网络入侵检测模型的局限性,提出基于机器学习算法的网络入侵检测模型,通过机器学习算法中性能优异的支持向量机构建"一对一"的网络入侵检测分类器,采用当前标准网络入侵检测数据库对模型的有效性进行验证,网络入侵检测正确率高达95%以上,检测误差远远低于实际应用范围,可以应用于实际的网络安全管理中。
关键词(KeyWords): 网络安全;入侵行为;机器学习算法;入侵检测;分类器;检测误差
基金项目(Foundation):
作者(Author): 张夏
DOI: 10.16652/j.issn.1004-373x.2018.03.029
参考文献(References):
- [1]DENNING D E.An intrusion detection model[J].IEEE transactions on software engineering,2010,13(2):222-232.
- [2]SUNG A H.Identify important features for intrusion detection using support vector machines and neural networks[C]//Proceedings of 2003 IEEE Symposium on Application and the Internet.Orlando:IEEE,2013:209-217.
- [3]李响.基于经验模态分解的局域网络入侵检测算法[J].西南师范大学学报(自然科学版),2016,41(8):132-137.LI Xiang.Local network intrusion detection algorithm based on empirical mode decomposition[J].Journal of Southwestern Normal University(natural science edition),2016,41(8):132-137.
- [4]沈夏炯,王龙,韩道军.人工蜂群优化的BP神经网络在入侵检测中的应用[J].计算机工程,2016,42(2):190-194.SHEN Xiajiong,WANG Long,HAN Daojun.BP neural network artificial bee colony optimization in the application of intrusion detection[J].Computer engineering,2016,42(2):190-194.
- [5]魏旻,王一帆,李玉,等.基于WIA-PA网络的周界入侵检测系统设计与实现[J].重庆邮电大学学报(自然科学版),2013,25(2):148-153.WEI Min,WANG Yifan,LI Yu,et al.WIA-PA network based perimeter intrusion detection system design and implementation[J].Journal of Chongqing University of Post and Telecommunications(natural science edition),2013,25(2):148-153.
- [6]VILAPLANA V,MARQUES F,SALEMBIER P.Binary partition trees for object detection[J].IEEE transactions on image processing,2010,17(11):2201-2216.
- [7]HONG J,SU M Y,CHEN Y H,et a1.A novel intrusion detection system based on hierarchical clustering and support vector machines[J].Expert systems with applications,2011(38):306-313.
- [8]MUNI D P,PAL N R,DAS J.Genetic programming for simultaneous feature selection and classifier design[J].IEEE transactions on systems,man,and cybernetics:part B,2009,36(1):106-117.
- [9]KENNEDY J,EBERHART R C.Particle swarm optimization[C]//Proceedings of 2005 IEEE International Conference on Neural Networks.Perth:IEEE,2005:1942-1948.
- [10]杨宏宇,赵明瑞,谢丽霞.基于自适应进化神经网络算法的入侵检测[J].计算机工程与科学,2014,36(8):1469-1475.YANG Hongyu,ZHAO Mingrui,XIE Lixia.Intrusion detection based on adaptive evolutionary neural network algorithm[J].Computer engineering and science,2014,36(8):1469-1475.
- [11]江峰,王春平,晋惠芬.基于相对决策熵的决策树算法及其在入侵检测中的应用[J].计算机科学,2012,39(4):223-226.JIANG Feng,WANG Chunping,JIN Huifen.Decision tree algorithm based on relative decision entropy and its application in intrusion detection[J].Computer science,2012,39(4):223-226.
- [12]龚俭,王卓然,苏琪,等.面向网络安全事件的入侵检测与取证分析[J].华中科技大学学报(自然科学版),2016,44(11):30-33.GONG Jian,WANG Zhuoran,SU Qi,et al.Intrusion detection and forensics analysis for network security incidents[J].Journal of Huazhong University of Science and Technology(natural science edition),2016,44(11):30-33.