基于pso_FSVM的车用动力电池温度预测模型研究Research on temperature prediction model of vehicle power battery based on pso_FSVM
刘荣,童亮,许永红
摘要(Abstract):
针对混合动力汽车在复杂工况下动力电池温度测量可靠性下降的问题,提出基于pso_FSVM的车用动力电池温度预测模型,该研究分别采集车辆key_on和key_off两种状态下的动力电池温度数据,采用粒子群优化的快速支持向量机算法,构建了稳定的动力电池温度预测模型。实验结果表明,在车辆key_on和key_off两种状态下,数据集的预测数据与实际测量数据的相关系数分别达到0.810 2和0.797 3,温度预测误差小于2℃,pso_FSVM模型提高了动力电池温度预测的精度和可靠性。
关键词(KeyWords): 混合动力汽车;动力电池温度;粒子群;快速支持向量机;预测模型;热动力学模型
基金项目(Foundation): 国家自然科学基金(51275053);; 电动汽车北京市实验室项目(PXM_2013_014224_000005)~~
作者(Author): 刘荣,童亮,许永红
DOI: 10.16652/j.issn.1004-373x.2018.12.006
参考文献(References):
- [1]胡经纬.质子交换膜燃料电池的电化学和数值模拟研究[D].大连:中国科学院,2006.HU Jingwei.Electrochemical and mathematical model studies on PEMFC[D].Dalian:Chinese Academy of Sciences,2006.
- [2]孙金磊,朱春波,李磊,等.电动汽车动力电池温度在线估计方法[J].电工技术学报,2017,32(7):197-203.SUN Jinlei,ZHU Chunbo,LI Lei,et al.Online temperature estimation method for electric vehicle power battery[J].Transactions of China Electrotechnical Society,2017,32(7):197-203.
- [3]洪晓斌,李年智,尹文伟,等.基于电阻层析成像的汽车动力电池内部温度监测[J].光学精密工程,2014,22(1):193-203.HONG Xiaobin,LI Nianzhi,YIN Wenwei,et al.Monitoring of internal temperature of vehicle power battery based on electrical resistance tomography[J].Optics and precision engineering,2014,22(1):193-203.
- [4]BERNARDI D,PAWLIKOWSKI E,NEWMAN J.A general energy balance for battery systems[J].Journal of Electrochemical Society,1985,132(1):5-12.
- [5]LIU Wei.Introduction to hybrid vehicle system modeling and control[M].Hoboken:Wiley,2013.
- [6]KENNEDY J,EBERHART R.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks.Piscataway:IEEE,1995:1942-1948.
- [7]王建国,张文兴.支持向量机建模及其智能优化[M].北京:清华大学出版社,2015:134-135.WANG Jianguo,ZHANG Wenxing.Support vector machine modeling and intelligent optimization[M].Beijing:Tsinghua University Press,2015:134-135.
- [8]彭宇,彭喜元,刘兆庆.微粒群算法参数效能的统计分析[J].电子学报,2004,32(2):209-213.PENG Yu,PENG Xiyuan,LIU Zhaoqing.Statistic analysis on parameter efficiency of particle swarm optimization[J].Acta electronica sinica,2004,32(2):209-213.
- [9]张文兴,丛宽,王建国,等.一种新的快速支持向量回归算法[J].微计算机信息,2010,26(33):208-209.ZHANG Wenxing,CONG Kuan,WANG Jianguo,et al.A new algorithm of fast support vector regression[J].Microcomputer information,2010,26(33):208-209.
- [10]HUANG Mingzhi,HAN Wei,WAN Jinquan,et a1.Multi-objective optimization for design and operation of anaerobic digestion using GA-ANN and NSGA-II[J].Journal of chemical technology and biotechnology,2016,91(1):226-233.