改进人工蜂群算法的无线传感器网络覆盖优化Wireless sensor networks coverage optimization based on improved artificial bee colony algorithm
李华,卢静
摘要(Abstract):
由于无线传感器网络覆盖属于组合优化范畴,为了在有限节点数量情况下提高其覆盖率,引入人工蜂群算法并进行改进。通过注入全局最优个体反馈来提高收敛速度,并升级了侦查蜂更新方法,采用一维高斯变异的方法,充分利用粒子先验知识,使粒子既能够保证足够的活力,又提高了算法的全局搜索能力。在40个节点数量条件下进行仿真实验,提出的改进算法覆盖率达到了87.2%,与改进蛙跳算法和标准人工蜂群算法的覆盖率相比分别提高了1.6%和3.87%。
关键词(KeyWords): 无线传感器网络;人工蜂群;全局最优;一维高斯变异;概率测量模型;覆盖优化
基金项目(Foundation): 国家自然科学基金项目(61501174);; 河南省科技攻关项目(132102310170)~~
作者(Author): 李华,卢静
DOI: 10.16652/j.issn.1004-373x.2018.03.004
参考文献(References):
- [1]龙宇翔,赵英杰.基于WSN覆盖问题及自愈算法的研究[J].现代电子技术,2016,39(1):27-30.LONG Yuxiang,ZHAO Yingjie.Study on coverage control problem for WSN and self-healing algorithm[J].Modern electronics technique,2016,39(1):27-30.
- [2]FERNANDO L,ANTONIO-JAVIER G,FELIPE G,et al.A comprehensive approach to WSN-based ITS applications:a survey[J].Sensors,2011(11):10220-10265.
- [3]张敖木翰,张平,曹剑东.基于物联网的公路交通运行状态评估与预测[J].公路,2015,60(9):178-183.ZHANG Aomuhan,ZHANG Ping,CAO Jiandong.Estimate and prediction of traffic state on expressway under Internet of Things[J].Highway,2015,60(9):178-183.
- [4]CRISTINA A,PEDRO S,ANDRéS I,et al.Wireless sensor networks for oceanographic monitoring:a systematic review[J].Sensors,2010,10(7):6948-6968.
- [5]戴宁,毛剑琳,付丽霞,等.基于虚拟势场的有向传感器网络覆盖优化算法[J].计算机应用研究,2014,31(3):905-907.DAI Ning,MAO Jianlin,FU Lixia,et al.Virtual potential field based coverage optimization algorithm for directional sensor networks[J].Application research of computers,2014,31(3):905-907.
- [6]王巍,彭力.基于改进微粒群算法的移动传感器网络自组织[J].计算机工程与设计,2009,30(3):654-659.WANG Wei,PENG Li.Self-deployment of mobile sensor network based on improved particle swarm optimization[J].Computer engineering and design,2009,30(3):654-659.
- [7]李响,郑瑞娟.基于改进蛙跳算法的无线传感器网络覆盖优化[J].计算机测量与控制,2014,22(6):1993-1995.LI Xiang,ZHENG Ruijuan.Wireless sensor network coverage optimization based on improved leapfrog algorithm[J].Computer measurement&control,2014,22(6):1993-1995.
- [8]屈巍,汪晋宽,赵旭,等.基于遗传算法的无线传感器网络覆盖控制优化策略[J].系统工程与电子技术,2010,32(11):2476-2479.QU Wei,WANG Jinkuan,ZHAO Xu,et al.Optimal coverage strategy based on genetic algorithm in wireless sensor networks[J].Systems engineering and electronics,2010,32(11):2476-2479.
- [9]刘洲洲,王福豹,张克旺.基于改进萤火虫优化算法的WSN覆盖优化分析[J].传感技术学报,2013,26(5):675-682.LIU Zhouzhou,WANG Fubao,ZHANG Kewang.Performance analysis of improved glowworm swarm optimization algorithm and the application in coverage optimization of WSNs[J].Chinese journal of sensors and actuators,2013,26(5):675-682.
- [10]张鹏,刘弘,刘鹏.改进的蜂群算法及其在CBD选址规划中的应用[J].计算机科学,2013,40(8):210-213.ZHANG Peng,LIU Hong,LIU Peng.Improved artificial bee colony algorithm and its application in CBD location planning[J].Computer science,2013,40(8):210-213.
- [11]陈杰,沈艳霞,陆欣.基于信息反馈和改进适应度评价的人工蜂群算法[J].智能系统学报,2016,11(2):172-179.CHEN Jie,SHEN Yanxia,LU Xin.Artificial bee colony algorithm based on information feedback and an improved fitness value evaluation[J].CAAI transactions on intelligent systems,2016,11(2):172-179.
- [12]BARRON J L,FLEET D J,BEAUCHEMIN S S.Performance of optical flow techniques[C]//Proceedings of 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington,DC:IEEE Computer Society,1992:236-242.
- [13]张玲,王玲,吴桐.基于改进的粒子群算法优化反向传播神经网络的热舒适度预测模型[J].计算机应用,2014,34(3):775-779.ZHANG Ling,WANG Ling,WU Tong.Thermal comfort prediction model based on improved particle swarm optimizationback propagation neural network[J].Journal of computer applications,2014,34(3):775-779.
- [14]孙泽宇,伍卫国,王换招,等.概率模型下的一种优化覆盖算法[J].软件学报,2016,27(5):1285-1300.SUN Zeyu,WU Weiguo,WANG Huanzhao,et al.Optimized coverage algorithm in probability model[J].Journal of software,2016,27(5):1285-1300.
- [15]孙伟,朱正礼,郑磊,等.基于人工鱼群和微粒群混合算法的WSN节点部署策略[J].计算机科学,2012,39(11):83-85.SUN Wei,ZHU Zhengli,ZHENG Lei,et al.Deployment strategy of wireless sensor network nodes based on AFSA-PSO hybrid algorithm[J].Computer science,2012,39(11):83-85.