复杂复印机故障信号的检测与提取Fault signal detection and extraction of complex photocopier
黄燕
摘要(Abstract):
针对当前复印机故障信号检测提取方法中存在误检率高的问题,提出基于蚁群的复杂复印机故障信号的检测与提取方法。基于蚁群的复杂复印机故障信号的检测中,利用检测某一路径的最大代价和最小代价得到蚂蚁于该路径上所释放信息素的浓度,以此计算蚁群对于某条路径选取的概率。更新该条路径上信息素浓度,按照路径上的蚂蚁存留的信息素浓度对复印机故障检测过程中路径选择优先顺序进行判断,以检测出复印机故障信号源。将复印机故障信号源代入小波包分析中,得到复印机总故障信号,计算故障信号中的各个频带信号相应能量,利用各频带相应能量,构建复印机故障信号特征向量。实验结果表明,与当前方法相比,所提方法误检率最低约为0.3%,故障检测准确性较高,检测性能更为优越。
关键词(KeyWords): 复印机;故障信号;信号检测;信号提取;蚁群;小波包
基金项目(Foundation):
作者(Author): 黄燕
DOI: 10.16652/j.issn.1004-373x.2018.22.025
参考文献(References):
- [1]吴魁,王仙勇,孙洁,等.基于深度学习的故障检测方法[J].计算机测量与控制,2017,25(10):43-47.WU Kui,WANG Xianyong,SUN Jie,et al. Fault detection method based on the deep belief network[J]. Computer measurement&control,2017,25(10):43-47.
- [2]芦竹茂,王天正,俞华,等.基于红外图像分析的电力设备热故障检测技术研究[J].现代电子技术,2017,40(11):123-126.LU Zhumao,WANG Tianzheng,YU Hua,et al. Research on electrical equipment thermal fault detection technology based on infrared image analysis[J]. Modern electronics technique,2017,40(11):123-126.
- [3]崔芮华,王绍敏.基于多维特征量的航空串联故障电弧检测[J].科学技术与工程,2017,17(13):38-43.CUI Ruihua,WANG Shaomin. Diagnosis of Arc faults in aviation AC system based on multi-dimensional features[J]. Science technology and engineering,2017,17(13):38-43.
- [4]刘洋,欧文,卢赢,等.基于径向基神经网络的称重设备传感器故障检测方法[J].传感技术学报,2017,30(6):861-866.LIU Yang,OU Wen,LU Ying,et al. Fault detection method for weighing equipment sensor based on radial basis function neural network[J]. Chinese journal of sensors and actuators,2017,30(6):861-866.
- [5]夏辉丽,郭亚男,余发军.基于稀疏分类算法的矿物传送设备故障诊断方法[J].工矿自动化,2016,42(2):43-46.XIA Huili,GUO Yanan,YU Fajun. Fault diagnosis method of mineral transmission equipment based on sparse classification algorithm[J]. Industry and mine automation,2016,42(2):43-46.
- [6]王迪,刘佳,王岩峰,等.基于多信号流模型的电子设备故障诊断方法[J].强激光与粒子束,2017,29(7):99-103.WANG Di,LIU Jia,WANG Yanfeng,et al. Modeling method of fault diagnosis of electronic device based on multi-signal flow[J]. High power laser and particle beams,2017,29(7):99-103.
- [7]孙海燕.大型机械设备振动系统故障诊断仿真研究[J].科技通报,2016,32(6):88-92.SUN Haiyan. Fault diagnosis simulation of large mechanical equipment vibration system[J]. Bulletin of science and technology,2016,32(6):88-92.
- [8]谢世满.机械设备振动信号采集对故障优化检测仿真[J].计算机仿真,2017,34(6):419-422.XIE Shiman. Simulation of fault detection for mechanical equipment vibration signal acquisition[J]. Computer simulation,2017,34(6):419-422.
- [9]高迎平,李洋,常文韬,等.基于模糊动态故障树的化工设备故障诊断方法研究[J].工业技术经济,2017,36(4):48-54.GAO Yingping,LI Yang,CHANG Wentao,et al. Research on failure diagnosis method of chemical equipment based on fuzzy dynamic fault tree[J]. Industrial technology&economy,2017,36(4):48-54.
- [10]段佳雷.基于分段线性非饱和随机共振的机械早期故障诊断方法研究[J].中国测试,2017,43(8):106-112.DUAN Jialei. Study on incipient fault diagnosis of machinery based on piecewise linearity and unsaturated stochastic resonance[J]. China measurement&testing technology,2017,43(8):106-112.