基于密度峰值聚类优化的光伏发电功率预测Power prediction of photovoltaic power generation based on clustering optimization of density peaks
王帅,杜欣慧,姚宏民
摘要(Abstract):
密度峰值聚类算法具有收敛速度快、鲁棒性强、无需人为确定最佳聚类数等特点,具备较好的应用前景。为提高光伏功率预测的精度,提出一种将密度峰值聚类算法应用于短期光伏功率预测的方法,并进行了必要优化。该方法首先通过类间距离优化增强气象数据的可分性;然后利用密度峰值聚类对其进行无标签归类,通过灰色关联度匹配出与待预测日相关度最高的类别;最后将其作为Elman神经网络的训练样本,得到预测结果。Matlab仿真结果表明,该方法能够明显提高气象数据的聚类效果,并有效提高光伏功率的短期预测精度。
关键词(KeyWords): 密度峰值聚类;光伏发电;灰色关联度;相似日匹配;Elman神经网络;短期功率预测
基金项目(Foundation):
作者(Author): 王帅,杜欣慧,姚宏民
DOI: 10.16652/j.issn.1004-373x.2018.20.034
参考文献(References):
- [1]嵇灵,牛东晓,汪鹏.基于相似日聚类和贝叶斯神经网络的光伏发电功率预测研究[J].中国管理科学,2015,23(3):118-122.JI Ling,NIU Dongxiao,WANG Peng. Photovoltaic load forecasting based on the similar day and Bayesian neural network[J]. Chinese journal of management science,2015,23(3):118-122.
- [2]杨金焕,于化丛,葛亮.太阳能光伏发电应用技术[M].北京:电子工业出版社,2009.YANG Jinhuan,YU Huacong,GE Liang. Application technology of solar photovoltaic power generation[M]. Beijing:Publishing House of Electronics Industry,2009.
- [3]周念成,闫立伟,王强钢.光伏发电在微电网中接入及动态特性研究[J].电力系统保护与控制,2010,38(14):119-127.ZHOU Niancheng,YAN Liwei,WANG Qianggang. Research on dynamic characteristic and integration of photovoltaic generation in microgrids[J]. Power system protection and control,2010,38(14):119-127.
- [4]王晓兰,葛鹏江.基于相似日和径向基函数神经网络的光伏阵列输出功率预测[J].电力自动化设备,2013,33(1):100-103.WANG Xiaolan,GE Pengjiang. PV array output power forecasting based on similar day and RBFNN[J]. Electric power automation equipment,2013,33(1):100-103.
- [5]傅美平,马红伟,毛建容.基于相似日和最小二乘支持向量机的光伏发电短期预测[J].电力系统保护与控制,2012,40(16):65-69.FU Meiping,MA Hongwei,MAO Jianrong. Short-term photovoltaic power forecasting based on similar days and least square support vector machine[J]. Power system protection and control,2012,40(16):65-69.
- [6]程启明,张强,程尹曼,等.基于密度峰值层次聚类的短期光伏功率预测模型[J].高电压技术,2017,43(4):1214-1222.CHENG Qiming, ZHANG Qiang, CHENG Yinman, et al.Short-term photovoltaic power prediction model based on hierarchical clustering of density peaks[J]. High voltage engineering,2017,43(4):1214-1222.
- [7]代倩,段善旭,蔡涛,等.基于天气类型聚类识别的光伏系统短期无辐照度发电预测模型研究[J].中国电机工程学报,2011,31(34):28-35.DAI Qian,DUAN Shanxu,CAI Tao,et al. Short-term PV generation system forecasting model without irradiation based on weather type clustering[J]. Proceedings of the CSEE,2011,31(34):28-35.
- [8]丁志勇,杨苹,杨曦,等.基于连续时间段聚类的支持向量机风电功率预测方法[J].电力系统自动化,2012,36(14):131-135.DING Zhiyong,YANG Ping,YANG Xi,et al. Wind power prediction method based on sequential time clustering support vector machine[J]. Automation of electric power systems,2012,36(14):131-135.
- [9] RODRIGUEZ A,LAIO A. Clustering by fast search and find ofdensity peaks[J]. Science,2014,344(6191):1492-1496.
- [10] HAN J W,KAMBER M.数据挖掘:概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2001.HAN J W,KAMBER M. Data mining:concepts and tech-niques[M]. FAN Ming,MENG Xiaofeng,translation. Beijing:China Machine Press,2001.