基于双高斯函数的一种高效鸟群优化算法An efficient bird swarm optimization algorithm based on double Gaussian function
彭君君,刘勇进
摘要(Abstract):
针对采用鸟群算法求解实际问题中的复杂函数时存在易陷入局部最优、学习能力差、缺乏收敛性理论分析等问题,提出基于双高斯函数的一种高效鸟群优化算法。该算法增加了鸟群的挑食行为,巧妙地避免初始寻优值易陷入局部最优点或鞍点的问题。同时,通过构建智能学习行为提高算法的自适应学习能力;然后构建双高斯函数更新法提高种群的多样性以增强算法全局搜索能力;最后,对于高效鸟群优化算法,给出时间复杂度分析。对多种标准测试函数进行仿真实验,实验结果表明,对于复杂函数优化,高效鸟群优化算法在达到收敛时其迭代次数相对基本鸟群算法减少50%左右,寻优成功率提高10%左右。
关键词(KeyWords): 高效鸟群优化算法;双高斯函数;局部最优点;时间复杂度分析;全局搜索能力;迭代次数
基金项目(Foundation): 国家自然科学基金(11371255)~~
作者(Author): 彭君君,刘勇进
DOI: 10.16652/j.issn.1004-373x.2018.23.023
参考文献(References):
- [1]KIM S J,LUSTING K M,BOYD S,et al.An interior-point method for larger-scale L1-regularized least squares[J].IEEEjournal of selected topics in signal processing,2008,1(4):606-617.
- [2]HELMBERG C,RENDL F,VANDERBEI R,et al.An interiorpoint method for semidefinte programming[J].SIAM journal on optimization,2006,6(2):342-361.
- [3]李磊,高雷阜,赵世杰.基于神经网络的粒子群算法优化SVM参数问题[J].计算机工程与应用,2015,51(4):162-164.LI L,GAO L F,ZHAO S J,Question of SVM kernel parameter optimization with particle swarm algorithm based on neural network[J].Computer engineering and applications,2015,51(4):162-164.
- [4]高浩,冷文浩,须文波.一种全局收敛的PSO算法及其收敛分析[J].控制与决策,2009,24(2):196-201.GAO H,LENG W H,XU W B.A global convergence algorithm of particle swarm optimization and its convergence analysis[J].Control and decision,2009,24(2):196-201.
- [5]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38.LI X L,SHAO Z J,QIAN J X.An optimizing method based on autonomous animats:fish-swarm algorithm[J].Systems engineering:theory&practice,2002,22(11):32-38.
- [6]宁爱平,张雪英.人工蜂群算法的收敛性分析[J].控制与决策,2013,28(9):1554-1558.NING A P,ZHANG X Y.Convergence analysis of artificial bee colony algorithm[J].Control and decision,2013,28(9):1554-1558.
- [7]YANG X,DEB S.Cuckoo search via Levy flights[C]//2009World Congress on Nature&Biologically Inspired Computing.Piscataway:IEEE,2009:210-214.
- [8]WU H S,ZHANG F M.Wolf pack algorithm for un-constrained global optimization[J].Mathematical problems in engineering,2014,31(1):84-94.
- [9]MENG X B,GAO X Z,LU L.A new bio-inspired optimization algorithm:bird swarm algorithm[J].Journal of experimental and theoretical artificial intelligent,2015,32(7):1-15.
- [10]YANN N D,RAZVAN P,CAGLAR G,et al.Identifying and attacking the saddle point problem in high-dimensional nonconvex optimization[J].Mathematics,2014,111(6):2475-2485.
- [11]薛俊杰,王瑛,李浩,等.一种狼群智能算法及收敛性分析[J].控制与决策,2016,1(8):1-9.XUE J J,WANG Y,LI H,et al.A smart wolf pack algorithm and its convergence analysis[J].Control and decision,2016,1(8):1-9.
- [12]刘波,戴礼荣,王仁华,等.基于双高斯GMM的特征参数规整及其在语音识别中的应用[J].自动化学报,2006,32(4):519-525.LIU B,DAI L R,WANG R H,et al.Double Gaussian GMMbased feature normalization and its application in speech recognition[J].Acta automatica Sinica,2006,32(4):519-525.
- [13]DAS M,DATTA J,DEY A,et al.Temperature dependent properties of AI/rGo-ZnCds Schottky diode and analysis of barrier inhomogeneities by double Gaussian distribution[J].Material letters,2017,204:184-187.
- [14]BAR-YEHUDA R,GOLDREICH O,ITAI A.On the time complexity of broadcast in multi-hop radio networks:an exponential gap between determinism and randomization[J].Journal of computer&system sciences,1992,45(1):104-126.
- [15]PAKHIRA M K.A linear time-complexity k-means algorithm using cluster shifting[C]//2014 International Conference on Computational Intelligence&Communication Networks.Bhopal:IEEE,2014:1047-1051.
- [16]ZALINESCU C.Convex analysis in general vector spaces[M].New York:World Scientific Publishing,2014.
- [17]张传朋,秦品乐,张晋京.基于深度卷积神经网络的图像去噪研究[J].计算机工程,2017,43(3):253-260.ZHANG C P,QIN P L,ZHANG J J.Research on image denoising based on deep convolutional neural network[J].Computer engineering,2017,43(3):253-260.
- [18]周海芳.基于改进CS算法的整像素数字散斑相关方法[J].计算机工程与设计,2015,41(8):2108-2113.ZHOU H F.Integer pixel digital speckle correlation method based on improved CS algorithm[J].Computer engineering and design,2015,41(8):2108-2113.