基于改进BP神经网络的关联挖掘模型设计Design of association mining model based on improved BP neural network
梁燕红
摘要(Abstract):
针对传统BP神经网络的关联挖掘模型中关联挖掘方法和用户交互矛盾问题,提出一种基于改进BP神经网络的关联挖掘模型设计。采用改进的BP神经网络算法进行BP神经网络计算,解决了二次函数的非线性优化问题。运用优化的算法保证了适应度函数的选择能力,避免了阈值以及权值对BP神经网络的误差倒数的影响。为了验证所设计的基于改进BP神经网络的关联挖掘模型的有效性,设计了对比仿真实验,实验结果表明,提出的基于改进BP神经网络的关联挖掘模型设计能够有效地解决关联挖掘方法和用户交互矛盾问题。
关键词(KeyWords): BP神经网络;关联挖掘模型;算法改进;二次函数;选择能力;用户交互
基金项目(Foundation): 国家自然科学基金项目(61364020);; 广西壮族自治区教育厅科研项目(2013LX111)~~
作者(Author): 梁燕红
DOI: 10.16652/j.issn.1004-373x.2018.02.041
参考文献(References):
- [1]李卫红,陈业滨,闻磊.基于GA-BP神经网络模型的登革热时空扩散模拟[J].中国图象图形学报,2015,20(7):981-991.LI Weihong,CHEN Yebin,WEN Lei.Simulation of spatiotemporal diffusion of dengue fever based on the GA-BP neural network model[J].Chinese journal of image and graphics,2015,20(7):981-991.
- [2]孙佳,王淳,胡蕾.基于改进灰色模型与BP神经网络模型组合的风力发电量预测研究[J].水电能源科学,2015(4):203-205.SUN Jia,WANG Chun,HU Lei.Research on wind power generation forecast based on the combination of improved grey model and BP neural network model[J].Hydroelectric energyscience,2015(4):203-205.
- [3]花亚梅,赵贤林,王效华,等.基于改进BP神经网络的厌氧发酵产气量预测模型[J].环境工程学报,2016,10(10):5951-5956.HUA Yamei,ZHAO Xianlin,WANG Xiaohua,et al.Predic-tion modeling for gas production of anaerobic fermentationbased on improved BP neural network[J].Journal of environ-mental engineering,2016,10(10):5951-5956.
- [4]康国炼,杨遂军,叶树亮.改进BP算法在热流传感器温度补偿中的应用[J].传感器与微系统,2016,35(2):154-156.KANG Guolian,YANG Suijun,YE Shuliang.Application of im-proved BP algorithm in temperature compensation of heat fluxsensor[J].Sensors and microsystems,2016,35(2):154-156.
- [5]胡丹娟,蒋金豹,陈绪慧,等.基于改进的BP神经网络裸露地表土壤水分反演模型对比[J].国土资源遥感,2016,28(1):72-77.HU Danjuan,JIANG Jinbao,CHEN Xuhui,et al.Comparisonof bared soft moisture inversion models based on improved BPneural network[J].Remote sensing for land and resources,2016,28(1):72-77.
- [6]刘晓晨,张静.基于改进BP神经网络的室内无线定位方法[J].计算机应用与软件,2016,33(6):114-117.LIU Xiaochen,ZHANG Jing.Indoor wireless positioning methodbased on improved BP neural network[J].Computer applica-tion and software,2016,33(6):114-117.
- [7]王新普,周想凌,邢杰,等.一种基于改进灰色BP神经网络组合的光伏出力预测方法[J].电力系统保护与控制,2016,44(18):81-87.WANG Xinpu,ZHOU Xiangling,XING Jie,et al.A methodof photovoltaic output prediction based on improved grey BPneural network combination[J].Power system protection andcontrol,2016,44(18):81-87.
- [8]姜雪杰,李国宁.基于改进BP神经网络的驼峰场车辆减速器故障诊断的研究[J].铁道标准设计,2016,60(12):135-139.JIANG Xuejie,LI Guoning.Research on fault diagnosis ofhump field vehicle decelerator based on improved BP neuralnetwork[J].Railway standard design,2016,60(12):135-139.
- [9]齐银峰,谭荣建.基于改进粒子群优化算法的BP神经网络在大坝变形分析中的应用[J].水利水电技术,2017,48(2):118-124.QI Yinfeng,TAN Rongjian.Application of improved particleswarm optimization algorithm-based BP neural network to damdeformation analysis[J].Water resources and hydropower engi-neering,2017,48(2):118-124.
- [10]赵燕伟,任设东,陈尉刚,等.基于改进BP神经网络的可拓分类器构建[J].计算机集成制造系统,2015,21(10):2807-2815.ZHAO Yanwei,REN Rendong,CHEN Weigang,et al.Con-struction of extension classifier based on improved BP neuralnetwork[J].Computer integrated manufacturing system,2015,21(10):2807-2815.