邻域粗糙集约简算法在图像特征选择中的应用Application of neighborhood rough set reduction algorithm in image feature selection
成婷,张扩,续欣莹
摘要(Abstract):
传统的行人检测方法为静态特征提取方法,而实际的数据是动态变化的,在增加图像集之后,特征集需要重新动态更新。因此,基于信息观的角度,将粗糙集与图像的特征提取方式相结合,引出不一致邻域的概念,提出一种基于增量式场景图像特征选择的邻域粗糙集约简算法研究,该算法运用新增图像样本集及其不一致邻域的样本进行特征提取,有效地避免了不必要的约简,从而快速求得特征集。最后通过实验验证了算法的有效性和高效性。
关键词(KeyWords): 不一致邻域;粗糙集;属性约简;信息熵;增量式学习;图像特征提取
基金项目(Foundation): 国家自然科学基金(61503271);; 山西省自然科学基金(2014011018-2)~~
作者(Author): 成婷,张扩,续欣莹
DOI: 10.16652/j.issn.1004-373x.2018.21.013
参考文献(References):
- [1] LIN T Y. Granular computing on binary relations in data mining and neighborhood systems[J]. Rough sets in knowledge discovery,1998(2):107-121.
- [2] HU Qinghua,YU Daren,XIE Zongxia. Neighborhood classifiers[J]. Expert systems with applications,2008,34(2):866-876.
- [3]胡清华,于达仁,谢宗霞.基于邻域粒化和粗糙逼近的数值属性约简[J].软件学报,2008,19(3):640-649.HU Qinghua,YU Daren,XIE Zongxia. Numerical attribute reduction based on neighborhood granulation and rough approximation[J]. Journal of software,2008,19(3):640-649.
- [4]王国胤,于洪,杨大春.基于条件信息熵的决策表约简[J].计算机学报,2002,25(7):759-766.WANG G Y,YU H,YANG D C. Decision table reduction based on conditional information entropy[J]. Chinese journal of computers,2002,25(7):759-766.
- [5] XU Y W,XU D,LIN S,et al. Detection of sudden pedestrian crossings for driving assistance systems[J]. IEEE transactions on systems,man and cybernetics,2012,42(3):729-739.
- [6] GERONIMO D,LOPEZ A M,SAPPA A D,et al. Survey of pedestrian detection for advanced driver assistance systems[J].IEEE transactions on pattern analysis and machine intelligence,2010,32(7):1239-1258.
- [7]田广,戚飞虎.移动摄像机环境下基于特征变换和SVM的分级行人检测算法[J].电子学报,2008,36(5):1024-1028.TIAN G,QI F H. Feature transformation and SVM based hierarchical pedestrian detection with a monocular moving camera[J]. Acta electronica Sinica,2008,36(5):1024-1028.
- [8] LI B,YAO Q,WANG K. A review on vision-based pedestrian detection in intelligent transportation systems[C]//The 9th IEEE International Conference on Networking, Sensing and Control. Beijing,China:IEEE,2012:393-398.
- [9] DOLLAR P,WOJEK C,SCHIELE B,et al. Pedestrian detection:an evaluation of the state of the art[J]. IEEE transactions on pattern analysis and machine intelligence,2012,34(4):743-761.
- [10] ENZWEILER M,GAVRILA D M. Monocular pedestrian detection:survey and experiments[J]. IEEE transactions on pattern analysis and machine intelligence,2009,31(12):2179-2195.
- [11]苏松志,李绍滋,陈淑媛,等.行人检测技术综述[J].电子学报,2012,40(4):814-820.SU S Z,LI S Z,CHEN S Y,et al. A survey on pedestrian detection[J]. Acta electronica Sinica,2012,40(4):814-820.
- [12] DALAL N,TRIGGS B. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern recognition. San Diego:IEEE,2005:886-893.
- [13] MU Y,YAN S,LIU Y,et al. Discriminative local binary pat-terns for human detection in personal album[C]//2008 IEEEConference on Computer Vision and Pattern Recognition. An-chorage:IEEE,2008:1-8.
- [14] WALK S,MAJER N,SCHINDLER K,et al. New featuresand insights for pedestrian detection[C]//2010 IEEE Confe-rence on Computer Vision and Pattern Recognition. San Fran-cisco:IEEE,2010:1030-1037.
- [15] GERóNIMO D,LóPEZ A,PONSA D,et al. Haar waveletsand edge orientation histograms for on–board pedestriandetection[C]//Proceedings of 2007 Iberian Conference onPattern Recognition and Image Analysis. Girona:SpringerBerlin Heidelberg,2007:418-425.
- [16] WU B,NEVATIA R. Detection of multiple,partially occludedhumans in a single image by Bayesian combination of edgeletpart detectors[C]//2005 IEEE International Conference onComputer Vision. Beijing,China:IEEE,2005:90-97.
- [17] SABZMEYDANI P,MORI G. Detecting pedestrians by learningshapelet features[C]//2007 IEEE Conference on ComputerVision and Pattern Recognition. Minneapolis:IEEE,2007:1-8.
- [18] LIANG Jiye,LI Deyu. Uncertainty measurement and knowledgeacquiring in information system[M]. Beijing:Science Press,2005.
- [19]江峰,王莎莎,杜军威,等.基于近似决策熵的属性约简[J].控制与决策,2015,30(1):65-70.JIANG Feng,WANG Shasha,DU Junwei,et al. Attributereduction based on approximate decision entropy[J]. Controland decision,2015,30(1):65-70.