- 师佳琪;杨皓浚;刘晓悦;陈鑫;
为解决现有语义分割模型无法兼顾全局语义信息与局部细节信息,以及残差模块细节特征提取能力弱的问题,提出一种语义分割方法。在HRNet的基础上引入了金字塔池化模块,兼顾了全局语义信息和局部细节信息,同时在原有残差模块BasicBlock的基础上引入大核深度卷积提高模型的细节特征提取能力,大幅度提高模型的精度。在PASCAL VOC2012图像数据集上的实验表明,相较于原始HRNet等其他分割网络,该算法取得了分割精度的显著提升,平均分割精度达到了89.27%。各设计模块的有效性也通过消融实验得以验证,尤其是改进Basic Block对提升分割性能具有关键作用,该模型大幅度提升了图像语义分割精度,提供了一种高效率、稳定且适用场景更加普遍的多尺度语义分割算法。
2025年07期 v.48;No.678 29-34页 [查看摘要][在线阅读][下载 1482K]
[下载次数:125 ] |[网刊下载次数:0 ] |[引用频次:0 ] |[阅读次数:2 ] - 黄样;陈继清;黄力湘;佘锴蓉;郝科崴;
苹果叶片病害的及时分割与准确分级对于提高苹果产量和质量至关重要。然而,在复杂的环境下,图像容易受到相似颜色背景和不同光照等因素的影响,给叶片和病斑的准确分割带来挑战,进而影响病害分级的准确性。针对此问题,文中提出一种实时语义分割算法RT-BiSeNet,用于苹果叶片病害的分割和分级。首先,分别对BiSeNet的上下文路径和空间路径进行重构,在保证实时分割速度的同时提高分割精度;其次,在解码器中融合浅层的特征映射,提高了叶片边缘和小病斑的分割效果。实验结果表明,RT-BiSeNet算法的mIoU和mPA分别为94.60%和97.13%,参数量和复杂度降低了85.95%和72.23%,分割速度达到130.20 f/s,优于其他实时分割方法。该算法能从复杂的背景中实时分割出叶片和病斑,然后根据分级标准对病害进行分级,可为实际生产中苹果病害的精准防控和治疗提供技术支持。
2025年07期 v.48;No.678 35-42页 [查看摘要][在线阅读][下载 1934K]
[下载次数:26 ] |[网刊下载次数:0 ] |[引用频次:0 ] |[阅读次数:4 ] - 吴茜;魏晶鑫;陈中举;
为解决无人机带来的安全隐患与隐私侵犯等问题,提出选择性坐标注意力下红外图像无人机目标检测方法。基于选择性坐标注意力机制,通过非对称卷积核在不同方向上捕捉不同尺度和形状的特征,将无人机特征的行列位置信息进行编码,动态地调整不同位置特征的权重,强化关键区域的特征表示。将多个红外图像输入YOLOv5网络中进行训练和处理后,在主干网络中经卷积操作后嵌入选择性坐标注意力机制,实现红外图像无人机目标特征精确提取。采用GIoU作为损失函数,优化预测框的位置和大小,实现红外图像无人机目标精准检测。实验结果表明:该方法对大小不同的无人机目标均能实现准确且快速的定位与检测,能够保持较高的检测精度。
2025年07期 v.48;No.678 43-47页 [查看摘要][在线阅读][下载 1365K]
[下载次数:129 ] |[网刊下载次数:0 ] |[引用频次:0 ] |[阅读次数:4 ] - 冉险生;刘圣斌;
针对现有无人机航拍图像目标检测算法检测精度较低、检测小尺度车辆误差较大等问题,提出一种改进YOLOv8的无人机车辆检测算法Improve-YOLOv8。首先,在骨干网络中的C2f卷积层引入可变形卷积模块DCNv2,提高骨干网络适应不规则空间结构的能力,增强模型对遮挡重叠小目标的检测能力;其次,借鉴Large Separable Kernel Attention的思想,提出具有长程依赖性与自适应能力的SPPF-LSKA模块,有效减少背景对航拍图像检测的干扰;然后,通过引入DyHead检测头,融合尺度、空间和任务三种注意力机制提升模型检测性能;最后,使用WIoUv3作为边界框回归损失,采用明智的梯度分配策略提高模型的定位能力。实验结果表明,在Mapsai数据集上Improve-YOLOv8相较于基准模型,在准确率、召回率、平均精度上分别提升了5.1%、6.1%和5.1%,表现出良好的检测性能,具有实际应用潜力。
2025年07期 v.48;No.678 48-56页 [查看摘要][在线阅读][下载 1680K]
[下载次数:608 ] |[网刊下载次数:0 ] |[引用频次:0 ] |[阅读次数:10 ] - 吴生彪;程显朋;李花宁;
针对运动想象脑电信号(MI-EEG)样本数据分布不平衡、时序特征提取时对长距离的依赖和关注度不均衡、局部特征提取难导致的基于MI-EEG的运动意图识别实时性差、精度低的问题,提出一种融合改进的双向长短时记忆神经网络(BiLSTM)和全卷积神经网络(FCN)的MI-EEG信号分类方法。首先,该方法利用条件生成对抗网络产生虚假的MI-EEG信号样本,实现训练样本集的有效扩充,解决了数据集过少且各类别数量不平衡的问题;其次,利用双向自注意力长短时记忆神经网络和全卷积神经网络的各自优势,避免了时序特征提取时对长距离的依赖和关注度不均衡、局部特征提取难以及无法兼顾MI-EEG信号的时-空域特征的问题;在此基础上,构建融合特征与动作分类标签间的非线性映射关系,从而提高模型的识别精度。最终将此分类模型与其他的MI-EEG分类模型在测试数据集进行了对比实验。研究成果表明,该MI-EEG识别模型准确度达到了97%,显示出较强的泛化能力。
2025年07期 v.48;No.678 57-64页 [查看摘要][在线阅读][下载 1724K]
[下载次数:58 ] |[网刊下载次数:0 ] |[引用频次:0 ] |[阅读次数:3 ] - 顾梦瑶;蔺素珍;晋赞霞;李烽源;
为了获得更准确、全面的现场信息,采用红外和可见光同步成像探测复杂场景已成为常态,但现有图像描述研究仍集中于可见光图像,无法全面而准确地描述已探测到的场景信息。为此,文中提出一种基于特征对齐融合的可见光-红外双波段图像描述生成方法。首先,利用Faster-RCNN分别提取可见光图像的区域特征和红外图像的网格特征;其次,以Transformer为基本架构,在可见光-红外图像对齐融合(VIIAF)编码器中引入位置信息做桥接,进行可见光-红外图像特征的对齐与融合;接着,将融合得到的视觉信息输入Transformer解码器中得到粗粒度文本的隐藏状态;最后将编码器输出的视觉信息、解码器得到的隐藏状态与经训练的Bert输出的语言信息输入所设计的自适应模块,使视觉信息和语言信息参与文本预测,实现文本由粗到细的图像描述。在可见光图像-红外图像描述数据集上进行的多组实验表明:所提方法不仅能够精确捕捉到可见光和红外图像间的互补信息,而且与使用Transformer的最优模型相比,其性能在BLEU-1、BLEU-2、BLEU-3、BLEU-4、METROR、ROUGE以及CIDEr指标上分别提高1.9%、2.1%、2.0%、1.8%、1.3%、1.4%、4.4%。
2025年07期 v.48;No.678 65-71页 [查看摘要][在线阅读][下载 1622K]
[下载次数:25 ] |[网刊下载次数:0 ] |[引用频次:0 ] |[阅读次数:4 ] - 宋苏;汪方正;高建安;刘泓森;
为了提升无人机航拍影像目标检测的准确率,并实现模型的轻量化,文中对YOLOv5目标检测模型进行了多方面的改进。首先,对YOLOv5的骨干网络进行了优化重组,采用更高效的动态卷积结构和多通道并行处理策略增强特征提取能力和检测精度,并显著减少模型参数量;其次,改进了损失函数,引入Focal-EIoU损失函数,更适合无人机航拍图像的特点,进一步提升了模型的检测精度;此外,将原本耦合的检测头进行了解耦处理,设计了轻量级解耦头,使分类、回归和置信度任务解耦处理,提高了检测精度和收敛速度,并合理控制了模型参数量。实验结果表明,改进后的DEP-YOLO模型在mAP@0.5指标上提升了9.6%,同时模型大小和参数量分别降低了77.93%和83.82%。综上所述,文中提出的综合改进策略显著提升了无人机航拍影像目标检测的精度,并实现了模型的轻量化,验证了其在航拍影像目标检测领域的有效性。
2025年07期 v.48;No.678 72-78页 [查看摘要][在线阅读][下载 1716K]
[下载次数:275 ] |[网刊下载次数:0 ] |[引用频次:0 ] |[阅读次数:4 ]